Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Formation of Xe-HL-enriched diamond grains in stellar environments

Abstract

Recently Lewis et al.1 have identified the C δstructure, previously found in C1, C2 and.C3 carbonaceous chrondrites, as diamond powder (that is, grains typically 50 Å in diameter). The Cδ is enriched (compared to the atmosphere of the Sun) in heavy and light isotopes of Xe (Xe-HL) and therefore assumed to be of pre-solar origin. In laboratory experiments Roy2 has described how small layers of diamonds can form at low pressure and at temperatures normally attributed to the grain-forming layers of cool stellar atmospheres (1,000–2,000 K). Lewis et al.1 therefore suggest following the original idea of Clayton3, that the diamonds found in meteorites are formed in the upper atmosphere of red giant stars. Here it is shown that the diamonds must have formed in the type of red giants called carbon stars, and that Xe-HL and diamonds cannot have formed in the same star, but must be produced one in each component of a close binary system. The diamonds are produced in the smaller of the components, near the end of its evolution, the Xe-HL is produced when the compact remnant (a white dwarf) of the bigger component has accreted so much mass from the carbon star that it explodes as a supernova. This is consistent with the normal evolution of type I supernovae (SNI), and it is demonstrated that there were appreciably more carbon stars participating in SNI formation at the time of Solar System formation than today. Finally, the thermodynamic conditions are found under which the diamonds are produced, and it is explained why Xe-HL is found in diamonds but not in silicon carbide, and why s-process Xe is expected to be found in silicon carbide (Cβ).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lewis, R. S., Ming, T., Wacker, J. F., Anders, E. & Steel, E. Nature 326, 160–162 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Roy, R. Nature 325, 17–18 (1987).

    Article  ADS  Google Scholar 

  3. Clayton, D. D. Astrophys. J. 199, 765–769 (1975).

    Article  ADS  CAS  Google Scholar 

  4. Schmid-Burgk, J. & Scholz, M. in Physical Processes in Red Giants (eds Iben, I, Jr. & Renzini, A.) 341–346 (Reidel, Dordrecht, 1981).

    Book  Google Scholar 

  5. Draine, B. T. in Physical Processes in Red Giants (eds Iben, I, Jr. & Renzini, A.) 317–333 (Reidel, Dordrecht, 1981).

    Book  Google Scholar 

  6. Salpeter, E. E. Rev. Mod. Phys. 46, 433–436 (1974).

    Article  ADS  CAS  Google Scholar 

  7. Eriksson, K., Gustafsson, B., Jørgensen, U. G. & Nordlund, Å. Astr. Astrophys. 132, 37–44 (1984).

    ADS  CAS  Google Scholar 

  8. Jørgensen, U. G., Almlöf, J. & Siegbahn, P. E. M. J. Chem. Phys. (submitted).

  9. Jørgensen, U. G. Thesis, Copenhagen Univ., 1987.

  10. Renzini, A. & Voli M. Astr. Astrophys. 94, 175–193 (1981).

    ADS  CAS  Google Scholar 

  11. Bertelli, G., Bressan, A. G. & Chiosi, C. Astr. Astrophys. 150, 33–52 (1985).

    ADS  CAS  Google Scholar 

  12. Woosley, S. E. in Nucleosynthesis and Chemical Evolution (eds Hauck, B., Maeder, A. & Meynet, G.) 1–195 (Geneva Observatory, 1986).

    Google Scholar 

  13. Clayton, D. D. Proc. Lunar Planet. Sci. 12B, 1781–1802 (Pergamon Press, Oxford, 1981).

    Google Scholar 

  14. Lambert, D. L. in Cool Stars with Excesses of Heavy Elements (eds Jaschek, M. & Keenan, P. C.) 191–223 (Reidel, Dordrecht, 1985).

    Book  Google Scholar 

  15. Lewis, R. S. & Anders, E. Astrophys. J. 247, 1122–1124 (1981).

    Article  ADS  CAS  Google Scholar 

  16. Miller, G. E. & Scalo, J. M. Astrophys. J. 263, 259–268 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Strömgren, B. in The Galaxy (eds Gilmore, G. & Carswell, R.) (Reidel, Dordrecht, in the press).

  18. Olsen, E. H. Ast. Astrophys. Suppl. 57, 443–466 (1984).

    ADS  CAS  Google Scholar 

  19. Peimbert, M. & Torres-Peimbert, S. Astrophys. J. 193, 327–333 (1974).

    Article  ADS  CAS  Google Scholar 

  20. Richer, H. B. & Westerlund, B. E. Astrophys. J. 264, 114–125 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Cook, K. H., Aaronson, M. & Norris, J. Astrophys. J. 305, 634–644 (1986).

    Article  ADS  CAS  Google Scholar 

  22. Reimers, D. Mem. Soc. Roy. Sci. Liege. Ser. 6 8, 369–382 (1975).

    ADS  CAS  Google Scholar 

  23. Iben, I. Jr & Renzini, A. Ah. Rev. Astr. Astrophys. 21, 271–342 (1983).

    Article  ADS  CAS  Google Scholar 

  24. Lambert, D. L., Gustafsson, B., Eriksson, K. & Hinkle, K. H. Astrophys. J. Suppl. 62, 373–425 (1986).

    Article  ADS  CAS  Google Scholar 

  25. Lewis, R. S. & Anders, E. Scient. Am. 249, 54–66 (1983).

    Article  Google Scholar 

  26. Bernatowicz, T. et al. Nature 330, 728–730 (1987).

    Article  ADS  CAS  Google Scholar 

  27. Zinner, E., Ming, T. & Anders, E. Nature 330, 730–732 (1987).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jørgensen, U. Formation of Xe-HL-enriched diamond grains in stellar environments. Nature 332, 702–705 (1988). https://doi.org/10.1038/332702a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/332702a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing