Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Liquid-like movements in crystalline insulin

Abstract

Diffuse X-ray scattering from protein crystals provides information about molecular flexibility and packing irregularities1–4. Here we analyse diffraction patterns from insulin crystals that show two types of scattering related to disorder: very diffuse, liquid-like diffraction, and haloes around the Bragg reflections. The haloes are due to coupled displacements of neighbouring molecules in the lattice, and the very diffuse scattering results from variations in atomic positions that are only locally correlated within each molecule. The measured intensity was digitally separated into three components: the Bragg reflections and associated haloes; the water and Compton scattering; and the scattering attributed to internal protein movements. We extend methods used to analyse disorder in membrane structures5–7 to simulate the diffuse scattering from crystalline insulin in terms of (1) the Patterson (autocorrelation) function of the ideal, ordered crystal structure, (2) the root-mean-square (r.m.s.) amplitude of the atomic movements, and (3) the mean distance over which these displacements are coupled. Move-ments of the atoms within the molecules, with r.m.s. amplitudes of 0.4–0.45 Å, appear to be coupled over a range of ~6 Å, as in a liquid. These locally coupled movements account for most of the disorder in the crystal. Also, the protein molecules, as a whole, jiggle in the lattice with r.m.s. amplitudes of ~0.25 Å that appear to be significantly correlated only between nearest neighbours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Phillips, G. N., Fillers, J. P. & Cohen, C. Biophys. J. 32, 485–502 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Boylan D. & Phillips, G. N. Biophys. J. 49, 76–78 (1986).

    Article  CAS  Google Scholar 

  3. Doucet, J. & Benoit, J. P. Nature 325, 643–646 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Artymiuk, P. Nature 325, 575–576 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Li, J. thesis, Harvard Univ. (1978).

  6. Maulik, S., Caspar, D. L. D., Phillips, W. C. & Goodenough, D. A. Biophys. J. 49, 342a (1986).

    Google Scholar 

  7. Maulik, S. thesis, Brandeis Univ. (1986).

  8. Caspar, D. L. D. & Holmes, K. C. J. Molec. Biol. 46, 99–133 (1969).

    Article  CAS  Google Scholar 

  9. Debye, P. ann. d. Physik 43, 49–95 (1914); The Collected Papers of Peter J. W. Debye (Interscience, New York 1954).

    Google Scholar 

  10. Waller, I. Z. Phys. 17, 398–408 (1923).

    Article  ADS  CAS  Google Scholar 

  11. James, R. W. The Optical Principles of the Diffraction of X-rays (Cornell University Press, 1965).

    Google Scholar 

  12. Amoros, J. L. & Amoros, M. Molecular Crystals: Their Transforms and Diffuse Scattering. (Wiley New York, 1968).

    MATH  Google Scholar 

  13. Adams, M. J. et al. Nature 224, 491–495 (1969).

    Article  ADS  CAS  Google Scholar 

  14. Compton, A. H. & Allison, S. K. X-rays in Theory and Experiment second edn (Van Nostrand, New York 1935).

    Google Scholar 

  15. Salunke, D. M., Veerapandian, B., Kodandapani, R. & Vijayan, M. Acta cryslallogr. B41, 431–436 (1985).

    Article  CAS  Google Scholar 

  16. Narten, A. H. Oak Ridge National Laboratory Report No. 4578 (1970).

  17. Sakabe, N., Sakabe, K. & Sasaki, K. Proc. int. Symp. Biomolec. Struct. Interactions, Suppl. J. Biosci. Vol. 8 numbers 1 and 2, 45–55 (1985).

    CAS  Google Scholar 

  18. Wonacott, A. J., Brook, P. Imperial College Rotation Film Scanning Package (1984).

  19. Bernstein, T. F. et al. J. Molec. Biol. 112, 535–42 (1977).

    Article  CAS  Google Scholar 

  20. Dodson, E. J., Dodson, G. G. Hodgkin, D. C. & Reynolds C. D. Can. J. Biochem. 57, 469–479 (1979).

    Article  CAS  Google Scholar 

  21. Murray, C. A. & Van Winkle, D. H. Phys. Rev. Lett. 58, 1200–1203 (1987).

    Article  ADS  CAS  Google Scholar 

  22. Debye P., Ann. d. Physik 39, 789–839 (1912).

    Article  ADS  CAS  Google Scholar 

  23. Morozov, V. N. & Morozova, T. Y. A. J. theor. Biol. 121, 73–88 (1986).

    Article  CAS  Google Scholar 

  24. Kalata, K. Meth. Enzym. 114, 486–510 (1985).

    Article  Google Scholar 

  25. Karplus, M. & McCammon, J. A. CRC crit. Rev. Biochem 9, 293–349 (1981).

    Article  CAS  Google Scholar 

  26. McCammon, J. A., Gelin, B. R. & Karplus, M. Nature 267, 585–590 (1977).

    Article  ADS  CAS  Google Scholar 

  27. Levitt, M., Sander, C. & Stern, P. J. molec. Biol. 181, 423–447 (1985).

    Article  CAS  Google Scholar 

  28. Ramanadham, M., Sieker, L. C. Jensen, L. H. & Birknes, B. J. Acta Crystallogr. A37 C-33 (1981).

  29. Sternberg, M. J., Grace, O. E. P. & Phillips, D. C. J. molec. Biol. 130, 231–253 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caspar, D., Clarage, J., Salunke, D. et al. Liquid-like movements in crystalline insulin. Nature 332, 659–662 (1988). https://doi.org/10.1038/332659a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/332659a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing