Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Selective responses of visual cortical cells do not depend on shunting inhibition

Abstract

Theoretical analyses of the electrical behaviour of the highly branched processes of nerve cells has focused attention on the possibility that single cells perform, complex logical operations rather than simply summing their synaptic inputs1–3. In particular, it has been suggested that the orientation and direction selectivity of cells in the visual cortex result from the action of a nonlinear 'shunting' inhibition that emulates an AND–NOT logical operation4. The characteristic biophysical feature of this proposed inhibitory mechanism is that it evokes a large and relatively sustained increase in the conductance of the neuronal membrane while leaving the membrane potential unaffected. This shunting mechanism contrasts with linear 'summative' inhibition in which conductance changes are less prominent, and inhibition is achieved by hyperpolarization of the membrane potential1. In a direct experimental test of the hypothesis that the selectivity of visual cortical neurons depends on shunting inhibition we found no evidence for the large conductance changes predicted by the theory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Blomfield, S. Brain Res. 69, 115–124 (1974).

    Article  CAS  Google Scholar 

  2. Koch, C., Poggio, T. & Torre, V. Phil. Trans. R. Soc. B 298, 227–264 (1982).

    Article  CAS  Google Scholar 

  3. Swindale, N. V. Nature 303, 570–571 (1983).

    Article  ADS  CAS  Google Scholar 

  4. Koch, C. & Poggio, T. in Models of the Visual Cortex (eds Rose, D. & Dobson, V. G.) 408–419 (Wiley, Chichester, 1985).

    Google Scholar 

  5. Rose, D. Expl. Brain Res. 28, 221–223 (1977).

    CAS  Google Scholar 

  6. Dean, A. F., Hess, R. F. & Tolhurst, D. J. J. Physiol. 236, 84P (1980).

    Google Scholar 

  7. Emerson, R. C., Citron, M. C. & Felleman, D. J. in Models of the Visual Cortex (eds Rose, D. & Dobson, V. G.) 420–431 (Wiley, Chichester, 1985).

    Google Scholar 

  8. Hubel, D. H. & Wiesel, T. N. J. Physiol. 160, 106–154 (1962).

    Article  CAS  Google Scholar 

  9. Torre, V. & Poggio, T. Proc. R. Soc. B 202, 409–416 (1978).

    ADS  Google Scholar 

  10. Rose, D. & Blakemore, C. Nature 249, 375–377 (1974).

    Article  ADS  CAS  Google Scholar 

  11. Sillito, A. M. J. Physiol. 250, 305–322 (1975).

    Article  CAS  Google Scholar 

  12. Tsumoto, T., Eckhart, W. & Creutzfeldt, O. D. Expl. Brain Res. 34, 351–363 (1979).

    Article  CAS  Google Scholar 

  13. Vidyasagar, T. R. & Heide, W. Neuroscience 17, 49–55 (1986).

    Article  CAS  Google Scholar 

  14. Ribak, C. E. J. Neurocytol. 7, 461–478 (1978).

    Article  CAS  Google Scholar 

  15. Freund, T. F., Martin, K. A. C., Smith, A. D. & Somogyi, P. J. comp. Neurol. 221, 263–278 (1983).

    Article  CAS  Google Scholar 

  16. Levay, S. J. comp. Neurol. 150, 53–86 (1973).

    Article  ADS  CAS  Google Scholar 

  17. Peters, A. in Synoptic Function (eds Edelman, G. M., Gall, W. E. & Cowan, W. M.) 373–397 (Wiley, New York, 1987).

    Google Scholar 

  18. Collonier, M. Brain Res. 9, 268–287 (1968).

    Article  Google Scholar 

  19. Szentagothai, J. in Handbook of Sensory Physiology. Vol. 7. Central Visual Information (ed. Jung, R.) 269–324 (Springer, Berlin, 1973).

    Google Scholar 

  20. Beaulieu, C. & Colonnier, M. J. comp. Neurol. 231, 180–189 (1985).

    Article  CAS  Google Scholar 

  21. Martin, K. A. C. & Whitteridge, D. J. Physiol. 353, 463–504 (1984).

    Article  CAS  Google Scholar 

  22. Martin, K. A. C., Somogyi, P. & Whitteridge, D. Expl Brain Res. 50, 193–200 (1983).

    CAS  Google Scholar 

  23. White, E. L. & Rock, M. P. J. Neurocytol. 9, 615–636 (1980).

    Article  CAS  Google Scholar 

  24. Creutzfeldt, O. & Ito, M. Expl. Brain Res. 6, 324–352 (1968).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Douglas, R., Martin, K. & Whitteridge, D. Selective responses of visual cortical cells do not depend on shunting inhibition. Nature 332, 642–644 (1988). https://doi.org/10.1038/332642a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/332642a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing