Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Disruption of a putative Cys–zinc interaction eliminates the biological activity of the Krüppel finger protein

Abstract

The best-characterized DNA-binding protein structure is the evolutionarily-conserved helix-turn-helix motif1–3. Recently a second motif for DNA-binding proteins, the 'zinc finger', emerged from sequence analysis of TFIIIA4, a factor involved in the control of transcription of the Xenopus 5S RNA gene. The finger structure is based on pairs of Cys and His residues which are arranged around a tetrahedrally-coordinated zinc ion4,5. This centre allows the folding of tandemly repeated 'finger loops'4 which are thought to specify the contact with target DNA. Zinc fingers have been observed in the DNA-binding protein domains of transcriptional activators in yeast6 and man (R. Tijan, personal communication) and in several regulatory proteins of Drosophila7–9 including pro-teins encoded by members of the gap class of segmentation genes8,9. One of these, Krüppel (Kr), acts at the first level of the segmentation gene hierarchy10, and its protein product may bind to DNA11. In addition, Kr is required for the development of the malpighian tubules, a posterior internal tissue that forms during later stages of embryogenesis12,13. Here we show that a mutation which results in a conservative amino-acid exchange eliminates Kr+ function. The change occurs in a key position within the putative core structure of a finger, and supports the role of Cys in metal binding as proposed by Klug and coworkers4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pabo, C. O. & Sauer, R. T. A. Rev. Biochem. 53, 293–321 (1984).

    Article  CAS  Google Scholar 

  2. McGinnis, W. et al. Cell 37, 403–408 (1984).

    Article  CAS  Google Scholar 

  3. Laughon, A. & Scott, M. P. Nature 310, 25–31 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Miller, J., McLachlan, A. D. & Klug, A. EMBO J. 4, 1609–1614 (1985).

    Article  CAS  Google Scholar 

  5. Brown, R. S., Sander, C. & Argos, P. FEBS Lett. 186, 271–274 (1985).

    Article  CAS  Google Scholar 

  6. Hartshorne, T. A., Blumberg, H. & Young, E. T. Nature 320, 283–287 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Vincent, A. NAR 14, 4385–4391 (1986).

    Article  CAS  Google Scholar 

  8. Rosenberg, U. B. et al. Nature 313, 336–339 (1986).

    Article  ADS  Google Scholar 

  9. Tautz, D. et al. Nature 327, 383–389 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Akam, M. Development 101, 1–22 (1987).

    CAS  PubMed  Google Scholar 

  11. Ollo, R. & Maniatis, T. Proc. natn. Acad. Sci. U.S.A. 84, 5700–5704 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Jäckle, H. et al. CSH Symp. Quant. Biol. 50, 465–473 (1985).

    Article  Google Scholar 

  13. Gloor, H. Arch. Julius Klaus-Stift. Vererbungsforsch. 29, 277–287 (1954).

    Google Scholar 

  14. Wieschaus, E., Nüsslein-Volhard, C. & Kluding, H. Devl. Biol 104, 172–186 (1984).

    Article  CAS  Google Scholar 

  15. Preiss, A. et al. Nature 313, 27–32 (1985).

    Article  ADS  CAS  Google Scholar 

  16. Gaul, U., Seifert, E., Schuh, R. & Jäckle, H. Cell 50, 639–647 (1987).

    Article  CAS  Google Scholar 

  17. Gaul, U. & Jäckle, H. Cell 51, 549–555 (1987).

    Article  CAS  Google Scholar 

  18. Rhodes, D. & Klug, A. Cell 46, 123–132 (1986).

    Article  CAS  Google Scholar 

  19. Petkovich, M., Brand, N. J., Krust, A. & Chambon, P. Nature 330, 444–450 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Carroll, S. B. & Scott, M. P. Cell 45, 113–126 (1986).

    Article  CAS  Google Scholar 

  21. Blumberg, H., Eisen, A., Sledziewski, A., Bader, D. & Young, E. T. Nature 328, 443–445 (1987).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redemann, N., Gaul, U. & Jäckle, H. Disruption of a putative Cys–zinc interaction eliminates the biological activity of the Krüppel finger protein. Nature 332, 90–92 (1988). https://doi.org/10.1038/332090a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/332090a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing