Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

A niche opportunity for stem cell therapeutics

Abstract

The success of hematopoietic stem cell (HSC)-based therapies relies on the ability of the stem cells to both engraft and self-renew sufficiently in the bone marrow microenvironment. Previous studies identified that a number of components of bone contribute to the regulation of HSCs indicating that they participate in a stem cell ‘niche’. This niche is a dynamic microenvironment that changes during development and with varying physiologic states. Components of it, such as the osteoblast, can be modulated through pharmacological treatment. Reasoning that the stem cell niche may be manipulated to augment the effectiveness of stem cell therapies, we demonstrated that daily treatment with parathyroid hormone (a clinically approved method for increasing osteoblast function) resulted in therapeutic benefit in three clinically relevant models of stem cell therapy. These results suggest that the niche may be a pharmacological target for altering stem cell function in settings of regenerative medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Nathwani AC, Davidoff AM, Linch DC . A review of gene therapy for haematological disorders. Br J Haematol 2004; 128: 3–17.

    Article  Google Scholar 

  2. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000; 288: 669–672.

    Article  CAS  Google Scholar 

  3. Mikkola HKA, Orkin SH . The journey of developing hematopoietic stem cells. Development 2006; 133: 3733–3744.

    Article  CAS  Google Scholar 

  4. Lord BI, Testa NG, Hendry JH . The relative spatial distributions of CFUs and CFUc in the normal mouse femur. Blood 1975; 46: 65–72.

    CAS  PubMed  Google Scholar 

  5. Nilsson SK, Johnston HM, Coverdale JA . Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood 2001; 97: 2293–2299.

    Article  CAS  Google Scholar 

  6. Schofield R . The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 1978; 4: 7–25.

    CAS  PubMed  Google Scholar 

  7. Schofield R . The stem cell system. Biomed Pharmacother 1983; 37: 375–380.

    CAS  PubMed  Google Scholar 

  8. Taichman RS, Emerson SG . Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J Exp Med 1994; 179: 1677–1682.

    Article  CAS  Google Scholar 

  9. Blair HC, Julian BA, Cao X, Jordan SE, Dong SS . Parathyroid hormone-regulated production of stem cell factor in human osteoblasts and osteoblast-like cells. Biochem Biophys Res Comm 1999; 255: 778–784.

    Article  CAS  Google Scholar 

  10. Taichman RS, Reilly MJ, Emerson SG . Human osteoblasts support human hematopoietic progenitor cells in in vitro bone marrow cultures. Blood 1996; 87: 518–524.

    CAS  PubMed  Google Scholar 

  11. Yamashita YM, Fuller MT, Jones DL . Signaling in stem cell niches: lessons from the Drosophila germline. J Cell Sci 2005; 118: 665–672.

    Article  CAS  Google Scholar 

  12. Kimble J, Crittenden SL . Controls of germline stem cells, entry into meiosis, and the sperm/oocyte decision in C. elegans. Annu Rev Cell Dev Biol 2007; 23: 405–433.

    Article  CAS  Google Scholar 

  13. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003; 425: 841–846.

    Article  CAS  Google Scholar 

  14. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003; 425: 836–841.

    Article  CAS  Google Scholar 

  15. Kiel MJ, Yilmaz ÖH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ . SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005; 121: 1109–1121.

    Article  CAS  Google Scholar 

  16. Sugiyama T, Kohara H, Noda M, Nagasawa T . Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 2006; 25: 977–988.

    Article  CAS  Google Scholar 

  17. Lapidot T, Dar A, Kollet O . How do stem cells find their way home? Blood 2005; 106: 1901–1910.

    Article  CAS  Google Scholar 

  18. Wolf NS . Dissecting the hematopoietic microenvironment. I. Stem cell lodgment and commitment, and the proliferation and differentiation of erythropoietic descendants in the Sl/Sld mouse. Cell Tissue Kinet 1974; 7: 89–98.

    CAS  PubMed  Google Scholar 

  19. Adams GB, Chabner KT, Alley IR, Olson DP, Szczepiorkowski ZM, Poznansky MC et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 2006; 439: 599–603.

    Article  CAS  Google Scholar 

  20. Adams GB, Martin RP, Alley IR, Chabner KT, Cohen KS, Calvi LM et al. Therapeutic targeting of a stem cell niche. Nat Biotechnol 2007; 25: 238–243.

    Article  CAS  Google Scholar 

  21. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K et al. Tie2/Angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 2004; 118: 149–161.

    Article  CAS  Google Scholar 

  22. Matrosova VY, Orlovskaya IA, Serobyan N, Khaldoyanidi SK . Hyaluronic acid facilitates the recovery of hematopoiesis following 5-fluorouracil administration. Stem Cells 2004; 22: 544–555.

    Article  CAS  Google Scholar 

  23. Dalerba P, Cho RW, Clarke MF . Cancer stem cells: models and concepts. Annu Rev Med 2007; 58: 267–284.

    Article  CAS  Google Scholar 

  24. Joyce JA . Therapeutic targeting of the tumor microenvironment. Cancer Cell 2005; 7: 513–520.

    Article  CAS  Google Scholar 

  25. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B et al. A perivascular niche for brain tumor stem cells. Cancer Cell 2007; 11: 69–82.

    Article  CAS  Google Scholar 

  26. Anderson KC . Targeted therapy of multiple myeloma based upon tumor-microenvironmental interactions. Exp Hematol 2007; 35: 155–162.

    Article  CAS  Google Scholar 

  27. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE . Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 2006; 12: 1167–1174.

    Article  Google Scholar 

  28. Krause DS, Lazarides K, von Andrian UH, Van Etten RA . Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med 2006; 12: 1175–1180.

    Article  CAS  Google Scholar 

  29. Campbell TB, Hangoc G, Liu Y, Pollok K, Broxmeyer HE . Inhibition of CD26 in human cord blood CD34+ cells enhances their engraftment of nonobese diabetic/severe combined immunodeficiency mice. Stem Cells Dev 2007; 16: 347–354.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D T Scadden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, G., Scadden, D. A niche opportunity for stem cell therapeutics. Gene Ther 15, 96–99 (2008). https://doi.org/10.1038/sj.gt.3303063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3303063

Keywords

This article is cited by

Search

Quick links