Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Efficient infection of tumor endothelial cells by a capsid-modified adenovirus

Abstract

Targeted antiangiogenic gene therapy is an attractive approach to treat metastatic cancer. However, the relative paucity of the receptors of the commonly used adenovirus serotype 5 in endothelial cells as compared with liver cells undermines the use of this vector for targeting the endothelial cells in tumors. To overcome this problem, we analyzed the ability of a hybrid Ad5/35 virus, where the serotype 5 fiber has been replaced with the fiber from serotype 35, to target tumor vasculature. Infection of human umbilical vein endothelial cells (HUVECs) with Ad5/35 at MOI 120 infected 100% of cells. In contrast, infection with Ad5 at the same MOI infected only 10% HUVECs. Ad5/35 was even more effective in transducing human aortic endothelial cells (HAECs), as infection with Ad5/35 at MOI 3.6 was sufficient to transduce 95% of cells. Gene expression analyses demonstrated that infection of HUVECs and HAECs with Ad5/35 resulted in between 1 and 3 orders of magnitude higher gene expression than infection with Ad5. Furthermore, various liver-derived cells were less infectable with Ad5/35 than Ad5, indicating a favorable toxicity profile for this virus. In a rat colon carcinoma tumor model, Ad5 was located mainly in the liver parenchyma after hepatic artery administration. In contrast, Ad5/35 was found only in the angiogenesis-rich border region of the tumor. Double immunostaining revealed that Ad5/35 colocalized with CD31 and Flk-1 positive endothelial cells. These results indicate that Ad5/35 may be useful in anticancer strategies targeting tumor endothelial cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Hanahan D, Folkman J . Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996; 86: 353–364.

    Article  CAS  PubMed  Google Scholar 

  2. Hood JD, Bednarski M, Frausto R, Guccione S, Reisfeld RA, Xiang R et al. Tumor regression by targeted gene delivery to the neovasculature. Science 2002; 296: 2404–2407.

    Article  CAS  PubMed  Google Scholar 

  3. Ferrari N, Glod J, Lee J, Kobiler D, Fine HA . Bone marrow-derived, endothelial progenitor-like cells as angiogenesis-selective gene-targeting vectors. Gene Therapy 2003; 10: 647–656.

    Article  CAS  PubMed  Google Scholar 

  4. Post DE, Khuri FR, Simons JW, Van Meir EG . Replicative oncolytic adenoviruses in multimodal cancer regimens. Hum Gene Ther 2003; 14: 933–946.

    Article  CAS  PubMed  Google Scholar 

  5. Bauerschmitz GJ, Barker SD, Hemminki A . Adenoviral gene therapy for cancer: from vectors to targeted and replication competent agents (review). Int J Oncol 2002; 21: 1161–1174.

    CAS  PubMed  Google Scholar 

  6. Khuri FR, Nemunaitis J, Ganly I, Arseneau J, Tannock IF, Romel L et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med 2000; 6: 879–885.

    Article  CAS  PubMed  Google Scholar 

  7. Fechner H, Haack A, Wang H, Wang X, Eizema K, Pauschinger M et al. Expression of coxsackie adenovirus receptor and alphav-integrin does not correlate with adenovector targeting in vivo indicating anatomical vector barriers. Gene Therapy 1999; 6: 1520–1535.

    Article  CAS  PubMed  Google Scholar 

  8. Tomko RP, Xu R, Philipson L . HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci USA 1997; 94: 3352–3356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wickham TJ, Tzeng E, Shears II LL, Roelvink PW, Li Y, Lee GM et al. Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins. J Virol 1997; 71: 8221–8229.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Merrick AF, Shewring LD, Sawyer GJ, Gustafsson KT, Fabre JW . Comparison of adenovirus gene transfer to vascular endothelial cells in cell culture, organ culture, and in vivo. Transplantation 1996; 62: 1085–1089.

    Article  CAS  PubMed  Google Scholar 

  11. Shayakhmetov DM, Li ZY, Ni S, Lieber A . Targeting of adenovirus vectors to tumor cells does not enable efficient transduction of breast cancer metastases. Cancer Res 2002; 62: 1063–1068.

    CAS  PubMed  Google Scholar 

  12. Wickham TJ, Segal DM, Roelvink PW, Carrion ME, Lizonova A, Lee GM et al. Targeted adenovirus gene transfer to endothelial and smooth muscle cells by using bispecific antibodies. J Virol 1996; 70: 6831–6838.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nettelbeck DM, Miller DW, Jerome V, Zuzarte M, Watkins SJ, Hawkins RE et al. Targeting of adenovirus to endothelial cells by a bispecific single-chain diabody directed against the adenovirus fiber knob domain and human endoglin (CD105). Mol Ther 2001; 3: 882–891.

    Article  CAS  PubMed  Google Scholar 

  14. Fisher KD, Stallwood Y, Green NK, Ulbrich K, Mautner V, Seymour LW et al. Polymer-coated adenovirus permits efficient retargeting and evades neutralising antibodies. Gene Therapy 2001; 8: 341–348.

    Article  CAS  PubMed  Google Scholar 

  15. Nicklin SA, Von Seggern DJ, Work LM, Pek DC, Dominiczak AF, Nemerow GR et al. Ablating adenovirus type 5 fiber-CAR binding and HI loop insertion of the SIGYPLP peptide generate an endothelial cell-selective adenovirus. Mol Ther 2001; 4: 534–542.

    Article  CAS  PubMed  Google Scholar 

  16. Einfeld DA, Schroeder R, Roelvink PW, Lizonova A, King CR, Kovesdi I et al. Reducing the native tropism of adenovirus vectors requires removal of both CAR and integrin interactions. J Virol 2001; 75: 11284–11291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Martin K, Brie A, Saulnier P, Perricaudet M, Yeh P, Vigne E et al. Simultaneous CAR- and alpha V integrin-binding ablation fails to reduce Ad5 liver tropism. Mol Ther 2003; 8: 485–494.

    Article  CAS  PubMed  Google Scholar 

  18. Koizumi N, Mizuguchi H, Sakurai F, Yamaguchi T, Watanabe Y, Hayakawa T et al. Reduction of natural adenovirus tropism to mouse liver by fiber-shaft exchange in combination with both CAR- and alphav integrin-binding ablation. J Virol 2003; 77: 13062–13072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Akiyama M, Thorne S, Kirn D, Roelvink PW, Einfeld DA, King CR et al. Ablating CAR and integrin binding in adenovirus vectors reduces nontarget organ transduction and permits sustained bloodstream persistence following intraperitoneal administration. Mol Ther 2004; 9: 218–230.

    Article  CAS  PubMed  Google Scholar 

  20. Gaggar A, Shayakhmetov DM, Lieber A . CD46 is a cellular receptor for group B adenoviruses. Nat Med 2003; 9: 1408–1412.

    Article  CAS  PubMed  Google Scholar 

  21. Roelvink PW et al. Identification of a conserved receptor-binding site on the fiber proteins of CAR-recognizing adenoviridae. Science 1999; 286: 1568–1571.

    Article  CAS  PubMed  Google Scholar 

  22. Stevenson SC, Rollence M, White B, Weaver L, McClelland A . Human adenovirus serotypes 3 and 5 bind to two different cellular receptors via the fiber head domain. J Virol 1995; 69: 2850–2857.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Rea D, Havenga MJ, van Den Assem M, Sutmuller RP, Lemckert A, Hoeben RC et al. Highly efficient transduction of human monocyte-derived dendritic cells with subgroup B fiber-modified adenovirus vectors enhances transgene-encoded antigen presentation to cytotoxic T cells. J Immunol 2001; 166: 5236–5244.

    Article  CAS  PubMed  Google Scholar 

  24. Kanerva A, Zinn KR, Chaudhuri TR, Lam JT, Suzuki K, Uil TG et al. Enhanced therapeutic efficacy for ovarian cancer with a serotype 3 receptor-targeted oncolytic adenovirus. Mol Ther 2003; 8: 449–458.

    Article  CAS  PubMed  Google Scholar 

  25. Shayakhmetov DM, Papayannopoulou T, Stamatoyannopoulos G, Lieber A . Efficient gene transfer into human CD34(+) cells by a retargeted adenovirus vector. J Virol 2000; 74: 2567–2583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gall J, Kass-Eisler A, Leinwand L, Falck-Pedersen E . Adenovirus type 5 and 7 capsid chimera: fiber replacement alters receptor tropism without affecting primary immune neutralization epitopes. J Virol 1996; 70: 2116–2123.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Havenga MJ, Lemckert AA, Grimbergen JM, Vogels R, Huisman LG, Valerio D et al. Improved adenovirus vectors for infection of cardiovascular tissues. J Virol 2001; 75: 3335–3342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chillon M, Bosch A, Zabner J, Law L, Armentano D, Welsh MJ et al. Group D adenoviruses infect primary central nervous system cells more efficiently than those from group C. J Virol 1999; 73: 2537–2540.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Herz J, Gerard RD . Adenovirus-mediated transfer of low density lipoprotein receptor gene acutely accelerates cholesterol clearance in normal mice. Proc Natl Acad Sci USA 1993; 90: 2812–2816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang X, Molema G, King S, Watkins L, Edgington TS, Thorpe PE et al. Tumor infarction in mice by antibody-directed targeting of tissue factor to tumor vasculature. Science 1997; 275: 547–550.

    Article  CAS  PubMed  Google Scholar 

  31. Borsi L, Balza E, Carnemolla B, Sassi F, Castellani P, Berndt A et al. Selective targeted delivery of TNFα to tumor blood vessels. Blood 2003; 102: 4384–4392.

    Article  CAS  PubMed  Google Scholar 

  32. Halin C, Rondini S, Nilsson F, Berndt A, Kosmehl H, Zardi L et al. Enhancement of the antitumor activity of interleukin-12 by targeted delivery to neovasculature. Nat Biotechnol 2002; 20: 264–269.

    Article  CAS  PubMed  Google Scholar 

  33. Arap W, Pasqualini R, Ruoslahti E . Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 1998; 279: 377–380.

    Article  CAS  PubMed  Google Scholar 

  34. Ellerby HM, Arap W, Ellerby LM, Kain R, Andrusiak R, Rio GD et al. Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med 1999; 5: 1032–1038.

    Article  CAS  PubMed  Google Scholar 

  35. Savontaus MJ, Sauter BV, Huang TG, Woo SL . Transcriptional targeting of conditionally replicating adenovirus to dividing endothelial cells. Gene Therapy 2002; 9: 972–979.

    Article  CAS  PubMed  Google Scholar 

  36. Gordon EM, Chen ZH, Liu L, Whitley M, Liu L, Wei D et al. Systemic administration of a matrix-targeted retroviral vector is efficacious for cancer gene therapy in mice. Hum Gene Ther 2001; 12: 193–204.

    Article  CAS  PubMed  Google Scholar 

  37. De Palma M, Venneri MA, Naldini L . In vivo targeting of tumor endothelial cells by systemic delivery of lentiviral vectors. Hum Gene Ther 2003; 14: 1193–1206.

    Article  CAS  PubMed  Google Scholar 

  38. Sakurai F, Mizoguchi H, Yamaguchi T, Hayakawa T . Characterization of in vitro and in vivo gene transfer properties of adenovirus serotype 35 vector. Mol Ther 2003; 8: 813–821.

    Article  CAS  PubMed  Google Scholar 

  39. Biermann V, Volpers C, Hussmann S, Stock A, Kewes H, Schiedner G et al. Targeting of high-capacity adenoviral vectors. Hum Gene Ther 2001; 12: 1757–1769.

    Article  CAS  PubMed  Google Scholar 

  40. Mead R, Hinchliffe SJ, Morgan BP . Molecular cloning, expression and characterization of the rat analogue of human membrane cofactor protein (MCP/CD46). Immunology 1999; 98: 137–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Elliott WL, Roberts BJ, Howard CT, Leopold III WR . Chemotherapy with [SP-4-3-(R)]-[1,1-cyclobutanedicarboxylato(2-)](2-methyl-1,4-butanediamine-N,N’)platinum (CI-973, NK121) in combination with standard agents against murine tumors in vivo. Cancer Res 1994; 54: 4412–4418.

    CAS  PubMed  Google Scholar 

  42. Engels K, Fox SB, Whitehouse RM, Gatter KC, Harris AL . Distinct angiogenic patterns are associated with high-grade in situ ductal carcinomas of the breast. J Pathol 1997; 181: 207–212.

    Article  CAS  PubMed  Google Scholar 

  43. Dechecchi MC, Melotti P, Bonizzato A, Santacatterina M, Chilosi M, Cabrini G et al. Heparan sulfate glycosaminoglycans are receptors sufficient to mediate the initial binding of adenovirus types 2 and 5. J Virol 2001; 75: 8772–8780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bautista DS, Hitt M, McGrory J, Graham FL . Isolation and characterization of insertion mutants in E1A of adenovirus type 5. Virology 1991; 182: 578–596.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Academy of Finland, Turku University Foundation, Sigrid Juselius Foundation, Turku University Central Hospital and Department of Defense (DAMD17-01-1-0336).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Savontaus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shinozaki, K., Suominen, E., Carrick, F. et al. Efficient infection of tumor endothelial cells by a capsid-modified adenovirus. Gene Ther 13, 52–59 (2006). https://doi.org/10.1038/sj.gt.3302598

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302598

Keywords

This article is cited by

Search

Quick links