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A new analysis of vector integration
has shown how integration site
varies among three different groups
of retroviruses1

Integration sites of
retroviruses

Even before we knew what retro-
viruses were we knew they could
induce malignancy.2 We now know
that a number of them are directly
associated with cell transformation
through mechanisms such as inser-
tional mutagenesis.3,4 Nonetheless,
the utility of retroviruses as gene
vectors has led to their widespread
use in vivo and in vitro. So the
relatively recent appearance of leu-
kaemia in two child recipients of
retroviral vectors was perhaps less of
a surprise to retrovirologists than it
was to gene therapists. However, the
effect of these sad occurrences on the
field has been profound: in particu-
lar, it has installed the goal of the
ability to control the sites of vector
integration as a holy grail for gene
therapy researchers.

Early studies that attempted to
identify integration sites used labor-
ious techniques such as positional
cloning,5 isochore analysis6 and
FISH.7 However, powerful PCR
methodologies and the completion
of the human genome sequence have
revolutionized the identification of
vector integration sites. Several large
studies have shown that retroviral
integration (and hence retroviral
vector delivery) is far from random:
factors such as base composition6,8

and the presence of alphoid9 or Alu
repeats10 as well as transcriptional
activity all influence the integration
site.

Now Rick Mitchell and co-work-
ers have extended these previous
findings in a large and well-con-
trolled analysis of new and pre-
viously identified integration sites,
which compares site preference of
murine (MLV), avian (ASLV) and

human (HIV) retroviruses. Chromo-
somal distribution, GC content, tran-
scriptional activity and distance
from cellular gene transcription start
sites were compared using appro-
priate controls.

The authors confirmed that HIV
has a tendency to integrate in regions
rich in expressed genes and they also
showed that it does not favour
integration in the intervening CpG
islands. These results were cell type
independent and it is likely that
other viral vectors will demonstrate
similar patterns. They also con-
firmed previous findings that MLV
favours transcriptional start sites. By
contrast, their new data showed that
ASLV has only a slight predilection
for transcriptionally active regions
and no start site preference. More-
over, many ASLV integrations occur
in intergenic regions.

It would be interesting to extend
these studies to cells with different
cycling properties than those that
these authors studied. Vector inte-
gration is complete within 24 h of
infection and often considerably
sooner in rapidly cycling cells,11 so
the authors’ analysis at 48 h might
have marginally over-represented
integrations in such cells. It would
also be interesting to compare inte-
gration sites in growth-arrested cells
to those in otherwise identical cy-
cling cells. This would be of parti-
cular relevance to those that use
lentiviruses (including HIV as stu-
died here) to deliver genes to non-
dividing cells.

What guides the integration
event?

The clear inference from these new
data is that different retroviral pre-
integration complexes (PICs) recog-
nize different features of genomic
nucleoproteins, but what is the cru-
cial link in this process? Integrase
itself has only a weak nucleotide
sequence preference12 so it is much

more likely that it is the DNA
associated proteins.

Nucleosome structure is impor-
tant for both ASLV integration,
where DNA ligation occurs more
efficiently in compact chromatin,
and for HIV, where the reverse is
true.13 Addition of the transcription
factor HNF3 inhibited ASLV end
joining at the HNF3 sites.13 This
together with previous data that
showed that ASLV integration does
not favour transcriptionally active
sites14 would have predicted the
Mitchell findings and it is nice to
see this so comprehensively con-
firmed.

Could covalent modifications of
Histone proteins be important for
target site selection? Lysine 4 and 9
of H3 are methylated at transcrip-
tional start sites15 and both H3 and
H4 have varying acetylation patterns
depending on whether they are in
open reading frames or intergenic
regions16 Other chromosomal pro-
teins also redistribute with transcrip-
tion and at least one, the INI/SNF5
complex, has been shown to interact
with HIV-1 integrase.17 Any or all of
these factors (and others) might
affect integration site choice.

What are the implications for
gene therapy?

Mitchell and co-workers suggest that
the large number of intergenic inte-
grations seen with ASLV might make
it a good gene vector candidate since
it could avoid the risk of insertional
mutagenesis. The assumption that
noncoding regions are ‘safe’ and do
not play a significant role in cellular
regulation is however not completely
secure and there is good published
data on their importance in influen-
cing heterochromatin formation (for
reviews see Henikoff,18 Fischle et al
and 19 Maison and Almouzni20).
Retrotransposons, endogenous rela-
tives of retroviruses, certainly do
affect heterochromatin forma-
tion.21,22 Thus noncoding regions
might play important regulatory
roles in the genome.

There are also doubts about the
subsequent transcriptional activity of
an ASLV inserted in an intergenic
region. Spreading chromatinization
might silence the provirus. So multi-
ple integrations might be needed to
achieve at least one that is regularly
transcribed, which in turn make it
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more likely that one of these would
affect a critical site.

Overall, Mitchell and co-workers
have completed a well-executed and
comprehensive study that adds to
our knowledge of retroviral integra-
tion and the factors that affect it.
Bushman’s group is one of the major
players in this field and the work
takes us one step further towards
understanding and ultimately con-
trolling retroviral integration. How-
ever, there is more to be discovered
before we can make definitive deci-
sions about our choice of retroviral
gene vectors. It is perhaps significant
that despite the apparent predilec-
tion of HIV for transcriptionally
active sites, and its abundance, only
one case of probable insertional
mutagenesis has been documented
reasonably securely23 and a second
with another lentivirus, Feline im-
munodeficiency virus.24 Many of the
target cells for HIV are lymphocytes
with a short lifespan, but there are
also many infected longer lived cells
of the monocyte macrophage series
in every carrier. For this reason, if the
virus had some potential for onco-
genicity one might have expected
this to appear in at least some of the
40 million infected individuals who
are each producing millions of inte-
grating viruses each day. Arguably
the lytic nature of HIV has concealed
such a tendency that might be
revealed as they are used as vectors.
However, there is no room for
complacency. If evidence of inser-
tional mutagenesis from the use of
any specific retro or lentiviral vector
comes to light subsequently, we will
have to think seriously about our
choices and indeed whether with our
current state of knowledge we can
risk any integrating vectors in hu-
man studies.
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