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New ways with reptating polymers 
A surprisingly simple model of polymer molecules moving in a network representing the constraints of 
others like themselves may be a pointer to a simpler theory of macromolecules in solution. 
THE simplest thing to say about the 
thermodynamics of polymer solutions is 
that nothing is particularly simple. This, 
no doubt, is one of the reasons why 
attempts to calculate the properties of 
polymer systems seem ever to be striving 
for still simpler models. One of the neatest 
so far must be that of Michael Rubinstein, 
from the Eastman Kodak Company at 
Rochester, New York, who has produced 
a model for the movement of a polymer 
molecule that resembles in many ways the 
movement of the pieces on a backgammon 
board (Phys. Rev. Lett. 59,1946; 19R7). 

The essence of the problem is that 
polymer chains can become entangled 
with each other. In extreme cases, they 
can even become knotted together, 
simulating molecules twice as big, or even 
several times as big, as the starting 
material. But even when this has not 
happened, the movement of individual 
molecules will be constrained by the 
presence of neighbouring molecules. 

What this means in practice is that not 
all the space a polymer molecule occupies 
is freely accessible to it. Some parts of the 
molecule may he relatively free to assume 
all possible configurations, hut others 
will he constrained as if at bottlenecks
there may he points, or regions of space 
represented perhaps hy encircling loops 
of other molecules, through which they 
must pass. 

The calculation of the movement of a 
polymer molecule, or even the mere 
enumeration of the configurations 
accessible to it, is a little like estimating 
the ease with which a long snake can 
thread its way through a series of bottle
necks along its path. But snakes usually 
know where they are heading, whereas 
the motion of polymer molecules in solu
tion is strictly statistical. There is nothing 
to prevent the movement of polymer 
molecules being impeded by their own 
perverse tendency to hunch themselves 
together in ways that make their passage 
through bottlenecks that much more 
difficult. 

Plainly all calculations of such a state of 
affairs must he simplifications. The 
ground rules are essentially those due to 
S.F.Edwards (now Sir Sam Edwards of 
the Cavendish Laboratory, Cambridge) in 
the 1960s: think of a single polymer mol
ecule in a three-dimensional liquid as 
being confined within a tube of variable 
diameter, representing the external con
straints of other molecules. Then set out 

to calculate the chance that the molecule 
will move as a whole along the tube in one 
direction or the other, allowing for the 
way in which, by chance, different lengths 
of polymer may be bunched together in 
successive sections of the tube. This 
phenomenon, called 'reptation', is what 
happens when real snakes move. 

One of the standard simplifications of 
the problem of movement by reptation is 
to suppose that the space accessible to a 
molecule is defined by some kind of 
regular lattice. In two dimensions, the 
ground rules would have it that the back
bone of a molecule should not be allowed 
to cross a lattice point. In three dimen
sions, the corresponding rule is that 
polymer tracks entering a cell through one 
face cannot cross any of the edges bound
ing that face. 

The essence of Rubinstein's further 
simplification of the problem is his con
cept of 'reptons', or sections along the 
length of the molecule (which ideally 
should be of roughly equal length). Then 
it is possible to represent a configuration 
of the molecule as a statement of the 
number of reptons to be found in suc
cessive cells along the prescribed track of 
the molecule. Naturally, in such a descrip
tion, there can he no gaps along the track, 
for that would mean that the backbone of 
the molecule is broken. 

The movement of molecules is now 
stripped down to, and perhaps beyond, its 
bare essentials. Rubinstein's recipe is to 
calculate the statistical properties of these 
collections of bunched reptons in suc
cessive cells under the assumption that 
each of them is free to move by random 
walking in either direction subject only to 
two constraints, which are as follows: (I) 
the configuration can never correspond to 
a broken chain, with an empty cell sep
arating two clusters, and (2) the chance 
that a repton will move into an empty 
contiguous cell is greater than that it will 
move into a contiguous occupied cell by 
the factor (z - I), where z is the number 
of faces of each cell, or its coordination 
number. 

The statistical mechanics of this model 
are breathtakingly simple. With N reptons 
per molecule, the calculation of the 
number of configurations in which the 
reptons are distributed over only K con
tiguous cells (where K ~ N) is simply the 
number of ways in which N - K objects 
can be distributed among K sites. From 
this combinatorial way of putting things, it 

quickly emerges that the average value of 
K, the cluster size, is proportional to the 
total number of reptons N, which is what 
everybody expects. 

The surprise is that this simple model 
also yields an estimate of the diffusion 
constant of the molecule. The first step is 
to calculate the chance that a jump of the 
chain from one repton distribution to 
another will succeed, which is a simple if 
tricky piece of probability calculation. 
Taking the diffusion constant as measured 
by the rate at which the centre of mass of 
the system moves along its tube, the 
simple result (in three dimensions) is that 
the diffusion constant is inversely proport
ional to the square of the molecular mass 
(which is the correct result). 

This by itself is well-known. Rubin
stein's special claim is that his simple 
model also yields a basis for calculating 
the relaxation time of a polymer molecule. 
which is in turn related to the experi
mental quantity of polymer solutions, the 
viscosity. The physics underlying this 
calculation is also childishly simple - to 
tackle the question of the rate at which a 
bunched-up polymer molecule will move 
when one of its ends is tugged (biasing the 
directions of likely random walks near the 
pulled end of the chain). 

Rubinstein is exercised by this point 
after noting that there is a glaring dis
crepancy between previous predictions of 
the relationship between longest relaxa
tion time of a polymer molecule and its 
molecular weight (a cube-law depend
ence) and empirical values (which yield a 
power-law dependence with an exponent 
more like 3.4). 

As always in these circumstances, the 
argument concludes with numerical 
simulations. Rubinstein calculates from 
his simple model values of the relaxation 
time or viscosity of longish polymer 
molecules and concludes that there is no 
reason why the exponent of the power-law 
dependence on molecular weight should 
not be anywhere between 3.22 and 3.52, 
depending on the value of z. By itself, that 
proves nothing. The model may be too 
simple to be a good guide to reality. And 
who, in any case, can tell what may 
happen in the real world of polymer mol
ecules. where z may change from one cell 
along the backbone of the molecule to the 
next. Yet this is a long way to have come 
with such a stripped-down model of 
polymer solutions. 
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