Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Embryonic and adult neurons interact to allow Purkinje cell replacement in mutant cerebellum

Abstract

It has often been proposed that one way of replacing degenerating neurons in the brain is to implant embryonic neurons of the same type1. However, in the case of so-called 'point-to-point' systems, as opposed to the 'paracrine' systems which mainly involve local release of neurotransmitter, functional recovery requires a precise re-establishment of the missing circuitry. We recently showed that in one point-to-point system, the cerebellum of adult mice homozygous for the mutation Purkinje cell degeneration (pcd)2, missing Purkinje cells can be replaced by grafting cerebellar primordia from normal mouse embryos3,4. Here, we present studies of the cellular mechanisms underlying this successful replacement. Grafted Purkinje cells leave the graft to migrate along stereotyped pathways to their final position in the deficient molecular layer, where they receive synaptic contacts from adult host neurons. Both the detailed timetable and the precise cellular interactions observed are remarkably similar to those occurring during normal development. Our results suggest that the deficient molecular layer exerts a selective neurotropic effect on neurons of the missing category, and that the embryonic neurons are able to respond to this signal during a period defined by their own internal clock. We also raise the possibility that embryonic Purkinje cells can induce in adult neural cells a new type of plasticity, that of recreating a permissive microenvironment for the integration of embryonic neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dunnett, S. B. & Björklund, A. in Neural Grafting in the Mammalian CNS (eds Björklund, A. & Steveni, U.) 673–700 (Elsevier, Amsterdam, 1985).

    Google Scholar 

  2. Mullen, R. J., Eicher, E. M. & Sidman, R. L. Proc. natn. Acad. Sci. U.S.A. 73, 208–212 (1976).

    Article  ADS  CAS  Google Scholar 

  3. Sotelo, C. Alvarado-Mallart, R. M. Proc. natn. Acad. Sci. U.S.A. 83, 1135–1139 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Soleto, C. & Alvarado-Mallart, R. M. Neuroscience 20, 1–22 (1987).

    Article  Google Scholar 

  5. Mullen, R. J. Nature 270, 245–247 (1977).

    Article  ADS  CAS  Google Scholar 

  6. Wassef, M., Simons, J., Tappaz, M. L. & Sotelo, C. Brain Res. 399, 125–135 (1986).

    Article  CAS  Google Scholar 

  7. Wasserman, R. H. & Taylor, A. N. Science 152, 791–793 (1961).

    Article  ADS  Google Scholar 

  8. Thomasset, M., Desplan, C. & Parkes, C. O. Eur. J. Biochem. 129, 519–524 (1983).

    Article  CAS  Google Scholar 

  9. Legrand, Ch., Thomasset, M., Parkes, C. O., Clavel, M. C. & Rabié, A. Cell Tiss. Res. 233, 389–402 (1983).

    Article  CAS  Google Scholar 

  10. Wassef, M., Zanetta, J. P., Brehier, A. & Sotelo, C. Devl Biol. 111, 129–137 (1985).

    Article  CAS  Google Scholar 

  11. Ramón y Cajal, S. Trab. Lab. Invest. biol. Univ. Mad. 8, 63–135 (1910).

    Google Scholar 

  12. Miale, I. L. & Sidman, R. L. Expl Neurol. 4, 277–296 (1961).

    Article  CAS  Google Scholar 

  13. Altman, J. & Bayer, S. Y. J. comp. Neurol. 231, 42–65 (1985).

    Article  CAS  Google Scholar 

  14. Rakic, P. J. comp. Neurol. 141, 287–312 (1971).

    Article  Google Scholar 

  15. Sotelo, C. Prog. Brain Res. 48, 149–170 (1978).

    Article  CAS  Google Scholar 

  16. Ramón y Cajal, S. Histologie du système nerveux de l'homme et des vertébrés Vol. 2 (Maloine, Paris, 1911).

    Google Scholar 

  17. Larramendi, L. M. H. in Neurobiology of Cerebellar Evolution and Development (ed. Llinás, R.) 803–843 (American Medical Association, Chicago, 1969).

    Google Scholar 

  18. Trenkner, E., Smith, D. & Segil, N. J. Neuroscience 4, 2850–2855 (1984).

    Article  CAS  Google Scholar 

  19. Meller, K. & Glees, P. in Neurobiology of Cerebellar Evolution and Development (ed. Llinás, R.) 783–801 (American Medical Association, Chicago, 1969).

    Google Scholar 

  20. Hendelman, W. J. & Aggerwal, A. S. J. comp. Neurol. 193, 1063–1079 (1980).

    Article  CAS  Google Scholar 

  21. Pasteels, J. L. et al. Brain Res. 384, 294–303 (1986).

    Article  CAS  Google Scholar 

  22. Stemberger, L. A., Hardy, P. H. Jr, Cuculis, J. J. & Meyer, H. G. J. Histochem. Cytochem. 18, 315–333 (1970).

    Article  Google Scholar 

  23. Dupouey, P., Benjelloun, S. & Gomes, D. Devl Neurosci. 7, 81–93 (1985).

    Article  CAS  Google Scholar 

  24. Palay, S. L. & Chan-Palay, V. Cerebellar Cortex Cytology and Organization (Springer, Berlin, 1974).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sotelo, C., Alvarado-Mallart, R. Embryonic and adult neurons interact to allow Purkinje cell replacement in mutant cerebellum. Nature 327, 421–423 (1987). https://doi.org/10.1038/327421a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/327421a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing