Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Major reorganization of immunoglobulin VH segmental elements during vertebrate evolution

Abstract

In mammals, the immunoglobulin heavy-chain variable region (VH) locus is organized in a linear fashion; individual VH, diversity (DH), joining (JH) and constant (CH) region segments are linked in separate regions1. During somatic development, coding segments flanked by characteristic short recombination signal sequences, separated by intervening sequence regions that may exceed 2,000 kilobases (kb), are recombined. Combinatorial joining of different segments as well as imprecision in this process contribute to the diversity of the primary antibody response; subsequent mutation further alters functionally rearranged genes. This basic somatic reorganization mechanism is shared by six major families of genes encoding antigen receptors2. Previously, we have shown that multiple germline genes and mammalian-like recombination signal sequences are associated with the VH gene family of Heterodontus francisci (horned shark), a primitive elasmobranch3. Studies presented here demonstrate that segmental reorganization involving mammalian-like DH and JH segments occurs in the lymphoid tissues of this species. In marked contrast to the mammalian system, we find multiple instances of close linkage (10 kb) between individual VH, DH, JH and CH segments. This unique organization may limit combinatorial joining and be a factor in the restricted antibody response of this lower vertebrate4,5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tonegawa, S. Nature 302, 575–581 (1983).

    Article  ADS  CAS  Google Scholar 

  2. Hood, L., Kronenberg, M. & Hunkapiller, T. Cell 40, 225–229 (1985).

    Article  CAS  Google Scholar 

  3. Litman, G. W. et al. Proc. natn. Acad. Sci. U.S.A. 82, 2082–2086 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Makela, O. & Litman, G. W. Nature 287, 639–640 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Litman, G. W., Stolen, J. S., Sarvas, H. O. & Makela, O. J. Immunogenet. 9, 465–474 (1982).

    Article  CAS  Google Scholar 

  6. Young, R. A. & Davis, R. W. Proc. natn. Acad. Sci. U.S.A. 80, 1194–1198 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Ravetch, J. V., Siebenlist, U., Korsmeyer, S., Waldmann, T. & Leder, P. Cell 27, 583–591 (1981).

    Article  CAS  Google Scholar 

  8. Rabbits, T. H., Forster, A. & Milstein, C. P. Nucleic Acids Res. 9, 4509–4524 (1981).

    Article  Google Scholar 

  9. Alt, F. W. & Baltimore, D. Proc. natn. Acad. Sci. U.S.A. 79, 4118–4122 (1982).

    Article  ADS  CAS  Google Scholar 

  10. Hu, N-t & Messing, J. Gene 17, 271–277 (1982).

    Article  CAS  Google Scholar 

  11. Early, P., Huang, H., Davis, M., Calame, K. & Hood, L. Cell 19, 981–992 (1980).

    Article  CAS  Google Scholar 

  12. Siu, G. et al. Nature 311, 344–350 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Berek, C., Griffiths, G. M. & Milstein, C. Nature 316, 412–418 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Du Pasquier, L. Nature 296, 311–313 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Pollok, B. A., Kearney, J. F., Vakil, M. & Perry, R. P. Nature 311, 376–379 (1984).

    Article  ADS  CAS  Google Scholar 

  16. Radbruch, A. et al. Nature 315, 506–508 (1985).

    Article  ADS  CAS  Google Scholar 

  17. Sakano, H., Kurosawa, Y., Weigert, M. & Tonegawa, S. Nature 290, 562–565 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Reynaud, C-A., Anquez, V., Dahan, A & Weill, J-C. Cell 40, 283–291 (1985).

    Article  CAS  Google Scholar 

  19. Brodeur, P. H. & Riblet, R. Eur. J. Immun. 14, 922–930 (1984).

    Article  CAS  Google Scholar 

  20. Honjo, T. & Habu, S. A. Rev. Biochem 54, 803–830 (1985).

    Article  CAS  Google Scholar 

  21. Wood, C. & Tonegawa, S. Proc. natn. Acad. Sci. U.S.A. 80, 3030–3034 (1983).

    Article  ADS  CAS  Google Scholar 

  22. Johnson, M. J., Natali, A. M., Cann, H. M., Honjo, T. & Cavalli-Sforza, L. L. Proc. natn. Acad. Sci. U.S.A. 81, 7840–7844 (1984).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinds, K., Litman, G. Major reorganization of immunoglobulin VH segmental elements during vertebrate evolution. Nature 320, 546–549 (1986). https://doi.org/10.1038/320546a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/320546a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing