Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Secondary antiproton production in relativistic plasmas

Abstract

Recent measurements1–3 of the low-energy flux of antiprotons () in cosmic rays give ratios of p̄/p which are greater by a factor of 3–5 than predicted by the simple ‘leaky box’ model of cosmic-ray propagation. Here we report on an investigation of the possibility that the low-energy excess reflects an origin in p–p collisions in relativistic plasmas. Because of both target and projectile motion in such plasmas, the antiproton production threshold in the frame of the plasma is much lower than the threshold of antiproton production in cosmic ray interactions with ambient matter. The spectrum of the resultant antiprotons therefore extends to much lower energy than in the cosmic ray case. Sites at which matter is accreted by compact objects could be sources of the low energy antiprotons. Escape of the antiprotons could be mediated by antineutron production.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Golden, R. L. et al. Phys. Rev. Lett. 43, 1196–1199 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Bogomolov, E. A. et al. Proc. 16th int. Cosmic Ray Conf. 1, 330–335 (1979).

    ADS  CAS  Google Scholar 

  3. Buffington, A. et al. Astrophys. J. 248, 1179–1193 (1981).

    Article  ADS  CAS  Google Scholar 

  4. Tan, L. C. & Ng, L. K. J. Phys. G 9, 227–242 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Stecker, F. W. et al. Astrophys. Space Sci. 96, 171–177 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Stephens, S. A. & Badhwar, G. D. Astrophys. Space Sci. 76, 213–233 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Bloemen, J. B. G. M. et al. Astrophys. J. 279, 136–143 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Stephens, S. A. & Mauger, B. G. in Proc. 19th Recontre de Moriond Astrophysics Meet., 217–225 (1984).

  9. Tan, L. C. & Ng, L. K. Astrophys. J. 269, 751–764 (1983).

    Article  ADS  CAS  Google Scholar 

  10. Weaver, T. A. Phys. Rev. A13, 1563–1569 (1976).

    Article  ADS  CAS  Google Scholar 

  11. Dermer, C. D. Astrophys. J. 280, 328–333 (1984).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  12. Tan, L. C. & Ng, L. K. Phys. Rev. D 26, 1179–1182 (1982).

    ADS  CAS  Google Scholar 

  13. Eilek, J. A. Astrophys. J. 236, 664–673 (1980).

    Article  ADS  CAS  Google Scholar 

  14. Meszaros, P. & Ostriker, J. P. Astrophys. J. 273, L59–L63 (1983).

    Article  ADS  Google Scholar 

  15. Gaisser, T. K. & Maurer, R. H. Phys. Rev. Lett. 30, 1264–1267 (1973).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dermer, C., Ramaty, R. Secondary antiproton production in relativistic plasmas. Nature 319, 205–206 (1986). https://doi.org/10.1038/319205a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/319205a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing