Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Magnetostratigraphy and palynology demonstrate at least 4 million years of Arctic Ocean sedimentation

Abstract

It has long been recognized1,2 that the Arctic Ocean has a major role in regulating the timing of Northern Hemisphere glaciations, global heat exchange and ocean circulation. Several recent studies3–7 have attempted to interpret the palaeoclimatic record in sediment cores from the Arctic Ocean, but conflicting ages have been reported for palaeoclimatic events dated by different methods3–6. To establish a consistent chronology for cores from the central Arctic Ocean, we performed detailed palaeomagnetic and palynological studies of three cores collected7 near the crest of the Alpha Ridge, and obtained radiocarbon dates from planktonic foraminifers isolated from 1-cm-thick intervals. Magnetic inclination values for these cores clearly record normal and reversed-polarity intervals that apparently correspond to the Brunnes and Matuyama magnetochrons; the longest core also includes polarity intervals typical of the Gauss and Gilbert magnetochrons. This chronology is confirmed by the first and last occurrences of pollen and dinoflagellate species that can be correlated with European8,9 and DSDP10–12 chronostratigraphies dated by standard biochronological methods. Micromass radiocarbon dates for foraminifers indicate a sedimentation rate of 1 mm per 1,000 yr. We believe that these data confirm a long (>4 Myr) chronology for the Alpha Ridge cores, the lithostratigraphy of which can be correlated over extensive areas of the western Arctic Ocean2–7, and more important, provide dinoflagellate and palynomorph data that indicate the validity of early chronology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ewing, M. & Donn, W.L. Science. 123, 1061–1066 (1956).

    Article  ADS  CAS  Google Scholar 

  2. Clark, D.L. Bull geol. See. Am. 82, 3313–3323 (1971).

    Article  Google Scholar 

  3. Sejrup, H.P., Miller, G.H., Brigham-Grette, J., Lovlie, R. & Hopkins, D. Nature 310, 772–775 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Zahn, R., Markusse, B. & Thiede, J. Nature 314, 433–435 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Worsley, T.R. & Herman, Y. Science 210, 323–325 (1980).

    Article  ADS  CAS  Google Scholar 

  6. Clark, D.L., 300, 321–325 (1982).

  7. Mudie, P.J. & Blasco, S.M. Geol. Sum Can. Pap. 84–22, 59–100 (1985).

    Google Scholar 

  8. Van der Hammen, T., Wijmstra, T. & Zagwijn, W. H. in The Late Cenozoic Ages (ed. Turekian, K. K.) 391–424 (Yale University Press, 1971).

    Google Scholar 

  9. Sue, J. & Zagwijn, W.H. Boreas. 12, 153–166 (1983).

    Google Scholar 

  10. Bujak, J.P. Micropaleontology. 30, 180–212 (1984).

    Article  Google Scholar 

  11. Mudie, P.J. in Init. Rep. DSDP. 94 (in the press).

  12. Koreneva, E.V., Zaklinskaya, E.D., Bratseva, G.M. & Kertashova, G.G. Init. Rep. DSDP. 38, 1169–1193 (1976).

    Google Scholar 

  13. Aksu, A.E. Geol Sum Can. Pap. 84–22, 101–114 (1985).

    Google Scholar 

  14. Mudie, P.J. Can. J. Earth Sei. 19, 729–747 (1982).

    Article  ADS  Google Scholar 

  15. Aksu, A.E. Geology. 11, 537–541 (1983).

    Article  ADS  Google Scholar 

  16. Gravenor, C.P., Symons, D.T.A. & Coyle, D.A. Geophys. Res. Lett. 1, 836–839 (1984).

    Article  ADS  Google Scholar 

  17. Mankinen, E.A. & Dalrymple, G.B. J. geophys. Res. 84, 615–626 (1979).

    Article  ADS  CAS  Google Scholar 

  18. Harland, W.B. et al. Geological Time Scale. (Cambridge Uniyeristy Press, 1982).

  19. Steuerwald, B.A., Clark, D.L. & Andrew, J.T., Earth planet. Sei. Lett. 5, 79–85 (1968).

    Article  ADS  Google Scholar 

  20. Clark, D.L. Bull geol Soc. Am. 81, 3129–3134 (1970).

    Article  Google Scholar 

  21. Hunkins, K., Be, A.W.H., Opdyke, N.D. & Mathieu, G. The Late Cenozoic Ages (ed. Turekian, K. K..) 215–237 (Yales University Press, 1971).

    Google Scholar 

  22. Mudie, P.J. Geol Sum Can. Pap. 84–22, 149–174 (1985).

    Google Scholar 

  23. Williams, G.L. & Bujak, J.P. Am. Ass. Stratigr. PalynoL Contr. Ser. No. 5A, 14–47 (1977).

  24. Gilbert, M.W. & Clark, D.L. Mar. Micropaleont. 7, 385–401 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aksu, A., Mudie, P. Magnetostratigraphy and palynology demonstrate at least 4 million years of Arctic Ocean sedimentation. Nature 318, 280–283 (1985). https://doi.org/10.1038/318280a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/318280a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing