Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Formation of mesosiderites by low-velocity impacts as a natural consequence of planet formation

Abstract

Mesosiderites are an enigmatic class of stony-iron meteorites composed of roughly equal amounts of pyroxenitic and basaltic silicates and metallic iron–nickel olivine is rare. We suggest here that, during the period of planet formation, mesosiderites originated by the low-velocity collisions of large metallic core fragments with the surface of a differentiated asteroid-size body. Relative velocities of the asteroids native to this region were low (≤1 km s−1) because it was distant from massive protoplanets. However, a few differentiated asteroids were destroyed by high-velocity collisions with interlopers perturbed by protoplanets into highly eccentric orbits. These collisions reduced mantles and crusts to small silicate fragments but left cores in the form of large, durable metal fragments. Mesosiderite-like pyroxenite–basalt–metal mixtures were formed when large core fragments accreted at low velocities to the regolith of an intact asteroid; the metal contents of other regolithic regions remained low. Most of the olivine in mesosiderite and howardite breccias we attribute to the mantles of the disrupted parent bodies. The low (12–20 mg g−1) olivine contents indicate that the amount of debris accreted from disrupted asteroids was small relative to the volumes of the regoliths.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Greenberg, R. & Chapman, C. R. Icarus 57, 267–279 (1984).

    Article  ADS  CAS  Google Scholar 

  2. McCall, G. J. H. Miner. Mag. 35, 1029–1060 (1966).

    CAS  Google Scholar 

  3. Powell, B. N. Geochim. cosmochim. Acta 33, 789–810 (1969).

    Article  ADS  CAS  Google Scholar 

  4. Powell, B. N. Geochim. cosmochim. Acta 35, 5–34 (1971).

    Article  ADS  CAS  Google Scholar 

  5. Floran, R. J. Proc. lunar. planet. Sci. Conf. 9, 1053–1081 (1978).

    ADS  Google Scholar 

  6. Floran, R. J., Caulfield, J. B. D., Harlow, G. E. & Prinz, M. Proc. lunar planet. Sci. Conf. 9, 1083–1114 (1978).

    ADS  Google Scholar 

  7. Delaney, J. S., Nehru, C. E., Prinz, M. & Harlow, G. E. Proc. lunar planet. Sci. Conf. 12 B, 1315–1342 (1981).

    ADS  Google Scholar 

  8. Wasson, J. T., Schaudy, R., Bild, R. W. & Chou, C.-L. Geochim. cosmochim. Acta 38, 135–149 (1974).

    Article  ADS  CAS  Google Scholar 

  9. Hewins, R. H. Workshop on Lunar Breccias and Soils and Their Meteoritic Analogs (eds Taylor, G. J. & Wilkening, L. L.) 49–53 (LPI Tech. Rep. 82-02, Lunar Planetary Institute, Houston, 1982).

    Google Scholar 

  10. McCord, T. B., Adams, J. B. & Johnson, T. V. Science 168, 1445–1447 (1970).

    Article  ADS  CAS  Google Scholar 

  11. Larson, H. P. & Fink, U. Icarus 26, 420–424 (1975).

    Article  ADS  CAS  Google Scholar 

  12. Safronov, V.S. Evolution of the Protoplanetary Cloud and Formation of the Earth and Planets (Nauka, Moscow; transi. Israel Program. Sci. Transi. NASA TTF-677, 1969).

    Google Scholar 

  13. Allègre, C. J., Birck, J. L., Fourcade, S. & Semet, M. Science 187, 436–438 (1975),

    Article  ADS  Google Scholar 

  14. Birck, J. L. & Allègre, C. J. Earth planet. Sci. Lett. 39, 37–51 (1978).

    Article  ADS  CAS  Google Scholar 

  15. Papanastassiou, D. A. & Wasserburg, G. J. J. Lunar Sci. 7, 665–667 (1976).

    ADS  Google Scholar 

  16. Papanastassiou, D. A., Rajan, R. S., Huneke, J. C. & Wasserburg, G. J. Lunar Sci. 5, 583–585 (1974).

    ADS  Google Scholar 

  17. Clayton, R. N. & Mayeda, T. K. Earth planet. Sci. Lett. 62, 1–6 (1983).

    Article  ADS  CAS  Google Scholar 

  18. Wasson, J. T. & Wetherill, G. W. in Asteroids (ed. Gehreis, T.) 926–974 (University of Arizona Press, Tucson, 1979).

    Google Scholar 

  19. Clayton, R. N., Onuma, N. & Mayeda, T. K. Earth planet. Sci. Lett. 30, 10–18 (1976).

    Article  ADS  CAS  Google Scholar 

  20. Wasson, J. T. & Warren, P. H. Lunar planet. Sci. 10, 1310–1312 (1979).

    ADS  CAS  Google Scholar 

  21. Consolmagno, G. J. & Drake, M. J. Geochim. cosmochim. Acta 41, 1271–1282 (1977).

    Article  ADS  CAS  Google Scholar 

  22. Wetherill, G.W. A. Rev. Astr. Astrophys. 18, 77–113 (1980).

    Article  ADS  CAS  Google Scholar 

  23. Prinz, M., Nehru, C. E., Delaney, J. S., Harlow, G. E. & Bedell, R. L. Proc. Lunar Planet. Sci. Conf. 11, 1055–1071 (1980).

    ADS  Google Scholar 

  24. Delaney, J. S., Prinz, M. & Takeda, H. Proc. lunar planet. Sci. Conf. 15, C251–C288 (1984).

    ADS  Google Scholar 

  25. Hewins, R. H. & Ulmer, G. C. Geochim. cosmochim. Acta 48, 1555–1560 (1984).

    Article  ADS  CAS  Google Scholar 

  26. Mittlefehldt, D. W. Earth planet. Sci. Lett. 51, 29–40 (1980).

    Article  ADS  CAS  Google Scholar 

  27. Prior, G. T. Miner. Mag. 18, 151–172 (1918).

    CAS  Google Scholar 

  28. Delaney, J. S., Nehru, C. E. & Prinz, M. Proc. lunar planet. Sci. Conf. 11, 1073–1087 (1980).

    ADS  Google Scholar 

  29. Warren, P. H. & Wasson, J. T. Proc. lunar planet. Sci. Conf. 10, 2051–2083 (1979).

    ADS  Google Scholar 

  30. Hewins, R. H. Proc. lunar planet. Sci. Conf. 15, C289–C297 (1984).

    ADS  Google Scholar 

  31. Bild, R. W., Robinson, K. L., Scott, E. R. D. & Prinz, M. Meteoritics 18, 266–277 (1983).

    Google Scholar 

  32. Scott, E. R. D. Geochim. cosmochim. Acta 36, 1205–1236 (1972).

    Article  ADS  CAS  Google Scholar 

  33. Hewins, R. H. Proc. lunar planet. Sci. Conf. 14, B257–B266 (1983).

    ADS  Google Scholar 

  34. Taylor, G. J. et al. Geochim. cosmochim. Acta 43, 323–337 (1979).

    Article  ADS  CAS  Google Scholar 

  35. Rubin, A. E. et al. Geochim. cosmochim. Acta 45, 2213–2228 (1981).

    Article  ADS  CAS  Google Scholar 

  36. Langseth, M. G., Keihm, S. J. & Peters, K. Proc. lunar. Sci. Conf. 7, 3143–3171 (1976).

    ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wasson, J., Rubin, A. Formation of mesosiderites by low-velocity impacts as a natural consequence of planet formation. Nature 318, 168–170 (1985). https://doi.org/10.1038/318168a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/318168a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing