Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

When does small-scale convection begin beneath oceanic lithosphere?

Abstract

Convection on a scale smaller than the horizontal dimensions of lithospheric plates can be produced by instabilities in the upper or lower boundary layer of the larger mantle flow. Small-scale convection associated with the upper boundary layer should pro duce a detectable gravity signal and affect the rate of cooling and subsidence of the lithosphere. I describe here a numerical model of small-scale convection in a fluid of variable viscosity. The results indicate that recently observed gravity anomalies1 showing a pat tern of highs and lows aligned in the direction of oceanic plate motion may be the result of small-scale mantle flow. The convective flow must begin in the first 6 Myr of lithospheric cooling to produce the observed signals, which is not inconsistent with constraints on the viscosity of the mantle. The calculated trend for the subsidence of the ocean floor is found to be almost linear with (time)1/2 even when small-scale convection has significantly changed the rate of subsidence. For average shallow asthenospheric viscosities of 1018 Pa s, the model subsidence can match data for the oceans2,3 and reproduce the magnitude and wavelength of the observed gravity anomalies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Haxby, W. F. & Weissel, J. K. J. geophys. Res. (in the press).

  2. Sclater, J. G., Anderson, R. N. & Bell, M. L. J. geophys. Res. 76, 7888–7915 (1971).

    Article  ADS  Google Scholar 

  3. Parsons, B. & Sclater, J. G. J. geophys. Res. 82, 803–827 (1977).

    Article  ADS  Google Scholar 

  4. Richter, F. M. & Parsons, B. J. geophys. Res. 80, 2529–2551 (1975).

    Article  ADS  Google Scholar 

  5. Houseman, G. A. & McKenzie, D. P. Geophys. J. R. astr. Soc. 68, 133–164 (1982).

    Article  ADS  Google Scholar 

  6. Turcotte, D. L., Torrance, K. E. & Hsui, A. T. Meth. Computational Phys 13, 431–454 (1973).

    Google Scholar 

  7. Parmentier, E. M. J. Fluid Mech. 84, 1–11 (1978).

    Article  ADS  Google Scholar 

  8. Weertman, J. & Weertman, J. R. A. Rev. Earth planet. Sci. 3, 293–315 (1975).

    Article  ADS  Google Scholar 

  9. Kohlstedt, D. L., Nichols, H. P. K. & Hornack, P. J. geophys. Res. 85, 3125–3130 (1980).

    Google Scholar 

  10. Sammis, C. G., Smith, J. C. & Schubert, G. J. geophys. Res. 86, 10707–10718 (1981).

    Article  ADS  CAS  Google Scholar 

  11. Cathles, L. M. III The Viscosity of the Earth's Mantle, 1–341 (Princeton University Press, 1975).

  12. Passey, Q. R. J. geophys. Res. 86, 11701–11708 (1981).

    Article  ADS  Google Scholar 

  13. Richter, F. M. & McKenzie, D. J. Geophys. 44, 441–471 (1978).

    Google Scholar 

  14. Wiens, D. A. & Stein, S. Tectonophysics (in the press).

  15. Parker, R. L. & Oldenburg, D. W. Nature phys. Sci. 242, 137–139 (1973).

    Article  ADS  Google Scholar 

  16. Skinner, B. J. Geol. Soc. Am. Mem. 97, 75–96 (1966).

    Google Scholar 

  17. Parsons, B. & McKenzie, D. J. geophys. Res. 83, 4485–4496 (1978).

    Article  ADS  Google Scholar 

  18. Heestand, R. E. & Crough, S. T. J. geophys. Res. 86, 6107–6114 (1981).

    Article  ADS  Google Scholar 

  19. McKenzie, D. P. Geophys. J. R. astr. Soc. 48, 211–238 (1977).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buck, W. When does small-scale convection begin beneath oceanic lithosphere?. Nature 313, 775–777 (1985). https://doi.org/10.1038/313775a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/313775a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing