Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Is sequence conservation in interferons due to selection for functional proteins?

Abstract

The human α-interferon (IFN-α) gene family consists of at least 14 potentially functional non-allelic members; the amino acid sequences they encode differ from each other by up to 20% of their residues (ref. 1 and K. Henco et al., in preparation). Human IFN-β, which is encoded by a single gene, is distantly related to the IFN-α family2; it differs in 67% of its residues from IFN-α2. There is considerable evidence that IFN-α and -β compete for the same receptors on their target cells3–6. Comparison of 14 non-allelic human IFN-α sequences and the IFN-β sequence has revealed that 37 of 166 residues are completely conserved and that several of these are arranged in clusters, for example at positions 29–33, 47–50 and 136–150. It is commonly held (for example, refs 2, 7) that evolutionary conservation of amino acids indicates that the residues in question are essential for function. To test this hypothesis in the case of IFNs, we have introduced single site-directed point mutations into the strictly conserved codons 48 and 49 of the IFN-α2 gene which form part of the longest uninterrupted cluster (position 47–50). We report here that the mutant proteins, containing Tyr, Ser and Cys instead of Phe48, or His instead of Gln49, have biological activities indistinguishable from those of wild-type IFN-α. In addition, when Glu62, a residue conserved in all known α and β IFNs of man, mouse and cattle, was replaced by Lys, antiviral activity remained unchanged.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Weissmann, C. et al. Phil. Trans. R. Soc. B299, 7–28 (1982).

    Article  CAS  Google Scholar 

  2. Taniguchi, T. et al. Nature 285, 547–549 (1980).

    Article  ADS  CAS  Google Scholar 

  3. Aguet, M. & Blanchard, B. Virology 115, 249–261 (1981).

    Article  CAS  Google Scholar 

  4. Branca, A. A. & Baglioni, C. Nature 294, 768–770 (1981).

    Article  ADS  CAS  Google Scholar 

  5. Joshi, A. R., Sarkar, F. H. & Gupta, S. L. J. biol. Chem. 257, 13884–13887 (1982).

    CAS  PubMed  Google Scholar 

  6. Yonehara, S., Yonehara-Takahashi, M. & Ishii, A. J. Virol. 45, 1168–1171 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Alberts, B. et al. in Molecular Biology of the Cell, p. 215 (Garland, New York, 1983).

    Google Scholar 

  8. Hutchison, C. A. III et al. J. biol. Chem. 253, 6551–6560 (1978).

    CAS  PubMed  Google Scholar 

  9. Razin, A., Hirose, T., Itakura, K. & Riggs, A. D. Proc. natn. Acad. Sci. U.S.A. 75, 4268–4270 (1978).

    Article  ADS  CAS  Google Scholar 

  10. Kössel, H., Buyer, R., Morioka, S. & Schott, H. Nucleic Acids. Res. Spec. Publ. 4, s91–s94 (1978).

    Article  Google Scholar 

  11. Panayotatos, N., Fontaine, A. & Truong, K. J. cell. Biochem. Suppl. 7 B, 109 (1983).

    Google Scholar 

  12. Dente, L., Cesareni, G. & Cortese, R. Nucleic Acids Res. 11, 1645–1655 (1983).

    Article  CAS  Google Scholar 

  13. Taub, F. & Thompson, E. B. Analyt. Biochem. 126, 222–230 (1982).

    Article  CAS  Google Scholar 

  14. Wallace, R. B. et al. Nucleic Acids Res. 9, 879–894 (1981).

    Article  CAS  Google Scholar 

  15. Evinger, M. & Pestka, S. Meth. Enzym. 79, 362–368 (1981).

    Article  CAS  Google Scholar 

  16. Shaw, G. D. et al. Nucleic Acids Res. 11, 555–573 (1983).

    Article  CAS  Google Scholar 

  17. Higashi, Y. et al. J. biol. Chem. 258, 9522–9529 (1983).

    CAS  PubMed  Google Scholar 

  18. Leung, D. W., Capon, D. J. & Goeddel, D. V. Biotechnology 2, 458–464 (1984).

    CAS  Google Scholar 

  19. Dayhoff, M. O. Protein Sequence Database of the National Biochemical Research Foundation, Sept. 1984 update (Washington, DC).

    Google Scholar 

  20. Vella, F. et al. Biochim. biophys. Acta 365, 318–322 (1974).

    Article  CAS  Google Scholar 

  21. Clegg, J. B., Weatherhall, D. J., Boon, W. H. & Mustafa, D. Nature 222, 379–380 (1969).

    Article  ADS  CAS  Google Scholar 

  22. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  23. Moore, S. & Stein, W. H. Meth. Enzym. 6, 819–831 (1963).

    Article  CAS  Google Scholar 

  24. Hannigan, G. E., Gewert, D. R., Fish, E. N., Read, S. E. & Williams, R. G. Biochem. Biophys. Res. Commun. 110, 537–544 (1981).

    Article  Google Scholar 

  25. Panayotatos, N. & Truong, K. Nucleic Acids Res. 9, 5679–5688 (1981).

    Article  CAS  Google Scholar 

  26. Messing, J., Crea, R. & Seeburg, P. H. Nucleic Acids Res. 9, 309–321 (1981).

    Article  CAS  Google Scholar 

  27. Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning, 170 (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  28. Zoller, M. J. & Smith, M. Nucleic Acids Res. 10, 6487–6500 (1982).

    Article  CAS  Google Scholar 

  29. Holmes, D. S. & Quigley, M. Analyt. Biochem. 114, 193–197 (1981).

    Article  CAS  Google Scholar 

  30. Maxam, A. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

  31. Derynck, R. et al. Nature 287, 193–197 (1980).

    Article  ADS  CAS  Google Scholar 

  32. Nagata, S. et al. Nature 284, 316–320 (1980).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valenzuela, D., Weber, H. & Weissmann, C. Is sequence conservation in interferons due to selection for functional proteins?. Nature 313, 698–700 (1985). https://doi.org/10.1038/313698a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/313698a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing