Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Inositol 1,4,5-trisphosphate microinjection activates sea urchin eggs

Abstract

When a sperm activates a sea urchin egg at fertilization, it triggers the release of calcium from a store within the egg by a hitherto unknown mechanism1,2. The ensuing transient increase in cytoplasmic calcium concentration is the stimulus for the beginning of embryonic development3,4. Here we have activated sea urchin (Lytechinus pictus) eggs by microinjecting inositol 1,4,5-trisphosphate (InsP3), a substance which Berridge5 has suggested may be an intracellular messenger whose probable function is to release calcium from intracellular stores6–9. It is thought that InsP3 is produced from plasma membrane phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) via enzymatic hydrolysis by a phospholipase C10. Recently, it has been demonstrated that there is a substantial increase in the turnover of polyphosphoinositides in the sea urchin egg at fertilization11. We now present preliminary evidence that there is a calcium-stimulated breakdown of PtdIns(4,5)P2 in the egg cortex. We believe that, just as microinjecting InsP3 stimulates an increase in cytoplasmic calcium, the production of InsP3 at fertilization may be responsible for the release of calcium from the egg's intracellular store.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chambers, E. L. & Angeloni, S. V. J. Cell Biol. 91, 181a (1981).

    Google Scholar 

  2. Whitaker, M. J. & Steinhardt, R. A. Q. Rev. Biophys. 15, 593–644 (1982).

    Article  CAS  Google Scholar 

  3. Steinhardt, R. A. & Epel, D. Proc. natn. Acad. Sci. U.S.A. 71, 1915–1919 (1974).

    Article  ADS  CAS  Google Scholar 

  4. Steinhardt, R. A., Zucker, R. & Schatten, G. Devl Biol. 58, 185–196 (1977).

    Article  CAS  Google Scholar 

  5. Berridge, M. J. Biochem. J. 212, 849–858 (1983).

    Article  CAS  Google Scholar 

  6. Streb, H., Irvine, R. F., Berridge, M. J. & Schultz, I. Nature 306, 67–68 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Burgess, G. M. et al. Nature 309, 63–66 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Joseph, S. K., Thomas, A. P., Williams, R. J., Irvine, R. F. & Williamson, J. R. J. biol. Chem. 259, 3077–3081 (1984).

    CAS  PubMed  Google Scholar 

  9. Prentki, M. et al. Nature 309, 562–564 (1984).

    Article  ADS  CAS  Google Scholar 

  10. Irvine, R. F., Letcher, A. J. & Dawson, R. M. C. Biochem. J. 218, 177–185 (1984).

    Article  CAS  Google Scholar 

  11. Turner, P. B., Sheetz, M. & Jaffe, L. A. Nature 310, 414–415 (1984).

    Article  ADS  CAS  Google Scholar 

  12. Baker, P. F. & Whitaker, M. J. Nature 276, 513–515 (1978).

    Article  ADS  CAS  Google Scholar 

  13. Whitaker, M. J. & Baker, P. F. Proc. R. Soc. B 218, 397–413 (1983).

    ADS  CAS  Google Scholar 

  14. Moser, F. J. exp. Zool. 80, 423–445 (1939).

    Article  Google Scholar 

  15. Allen, R. D. Expl Cell Res. 6, 403–424 (1954).

    Article  ADS  CAS  Google Scholar 

  16. Jaffe, L. F. Devl Biol. 99, 265–276 (1983).

    Article  CAS  Google Scholar 

  17. Shen, S. S. & Steinhardt, R. A. Nature 272, 253–254 (1978).

    Article  ADS  CAS  Google Scholar 

  18. Whitaker, M. J. & Steinhardt, R. A. Cell 25, 95–103 (1981).

    Article  CAS  Google Scholar 

  19. Ehrenstein, G., Defelice, L. J. & Dale, B. Biophys. J. 45, 23a (1984).

    Google Scholar 

  20. Hamaguchi, Y. & Hiramoto, Y. Expl Cell Res. 134, 171–179 (1981).

    Article  CAS  Google Scholar 

  21. Irvine, R. F., Brown, K. D. & Berridge, M. J. Biochem. J. 222, 269–272 (1984).

    Article  CAS  Google Scholar 

  22. Crank, J. The Mathematics of Diffusion (Oxford University Press, 1975).

    MATH  Google Scholar 

  23. Mannhertz, H. G. Pflügers Archges. Physiol. 303, 230–248 (1968).

    Article  Google Scholar 

  24. Seiffert, B. & Agranooff, B. W, B. W. Biochim. biophys. Acta 98, 574–581 (1964).

    Article  Google Scholar 

  25. Jolles, J., Zwiers, H., Dekker, A., Wurtz, K. W. A. & Gispen, W. H. Biochem. J. 194, 283–291 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitaker, M., Irvine, R. Inositol 1,4,5-trisphosphate microinjection activates sea urchin eggs. Nature 312, 636–639 (1984). https://doi.org/10.1038/312636a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/312636a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing