Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interactions between enkephalin and GABA in avian retina

Abstract

In addition to conventional neurotransmitters such as acetylcholine, dopamine, glycine and γ-aminobutyric acid (GABA)1,2, a number of peptide-immunoreactive substances have recently been localized in the vertebrate retina3,4. The functional roles of these retinal peptides and their interactions with conventional neurotransmitters are largely unknown. We have previously shown that exogenous opiates affect both the release of GABA and the firing patterns of ganglion cells in the goldfish retina5, and we have now begun a systematic characterization of the opioid pathways in the chicken retina, because, among vertebrate retinas, avian retinas contain the highest concentration of enkephalins6. Monoclonal antibodies specific for enkephalin have been used to demonstrate that a subpopulation of enkephalin-containing amacrine cells exists in the chicken retina6,7. This retina also synthesizes Met5-enkephalin and releases it on cell depolarization6,8,9. The enkephalin-induced inhibition of GABA release in goldfish retina5 led us to examine whether similar interactions occur in chicken, and if so, whether enkephalins and GABA coexist in the same amacrine cells. Our results, presented here, indicate that exogenous enkephalins do indeed inhibit GABA release in the chicken retina. Surprisingly, we found that although some amacrine cells contain both enkephalin and GABA, others contain only one or the other.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lam, D. M. K. et al. Neurochem. Int. 1, 183–190 (1980).

    Article  Google Scholar 

  2. Ehinger, R. Vision Res. 23, 1281–1291 (1983).

    Article  CAS  Google Scholar 

  3. Stell, W., Marshak, D., Yamada, T., Brecha, N. & Karten, H. Trends Neurosci. 3, 292–295 (1980).

    CAS  Google Scholar 

  4. Brecha, N. in Chemical Neuroanatomy (ed. Emson, P. C.) 85–129 (Raven, New York, 1983).

    Google Scholar 

  5. Djamgoz, M. B. A., Stell, W. K., Chin, C. A. & Lam, D. M. K. Nature 292, 620–623 (1981).

    Article  ADS  CAS  Google Scholar 

  6. Watt, C. B., Su, Y.-Y. T. & Lam, D. M. K. Prog. Retina Res. (in the press).

  7. Watt, C. B., Tavella, D., Su, Y.-Y. Y., Peng, Y. W. & Lam, D. M. K. Soc. Neurosci. Abstr. 9, 282 (1983).

    Google Scholar 

  8. Su, Y.-Y. T. & Lam, D. M. K. Soc. Neurosci. Abstr. 9, 289 (1983).

    Google Scholar 

  9. Su, Y.-Y. T., Su, S. & Lam, D. M. K. Invest. Ophthal. vis. Sci. 25 (Suppl.), 292 (1984).

    Google Scholar 

  10. Chin, C. A. & Lam, D. M. K. J. Physiol., Lond. 308, 185–195 (1980).

    Article  CAS  Google Scholar 

  11. Ayoub, G. S. & Lam, D. M. K. J. Physiol., Lond. (in the press).

  12. Marshall, J. & Voaden, M. J. Invest. Ophthal. vis. Sci. 13, 602 (1974).

    CAS  Google Scholar 

  13. Brecha, N., Karten, H. J. & Laverack, C. Proc. natn. Acad. Sci. U.S.A. 76, 3010–3104 (1979).

    Article  ADS  CAS  Google Scholar 

  14. Tornqvist, K., Loren, I., Hakanson, R. & Sundler, F. Expl Eye Res. 33, 55–64 (1981).

    Article  CAS  Google Scholar 

  15. Fukuda, M. Cell. molec. Biol. 28, 275–283 (1982).

    CAS  Google Scholar 

  16. Ishimoto, I. et al. Invest. Ophthal. vis. Sci. 24, 879–885 (1983).

    CAS  PubMed  Google Scholar 

  17. Lam, D. M. K. et al. Nature 278, 565–567 (1979).

    Article  ADS  CAS  Google Scholar 

  18. Brandon, C., Lam, D. M. K. & Wu, J.-Y. Proc. natn. Acad. Sci. U.S.A. 76, 3557–3561 (1980).

    Article  ADS  Google Scholar 

  19. Famiglietti, E. V., Kaneko, A. & Tachibana, M. Science 198, 1267–1269 (1977).

    Article  ADS  Google Scholar 

  20. Stell, W. K., Ishida, A. T. & Lightfoot, D. O. Science 198, 1269–1271 (1977).

    Article  ADS  CAS  Google Scholar 

  21. Nelson, R., Famiglietti, E. V. & Kolb, H. J. Neurophysiol. 41, 472–483 (1978).

    Article  CAS  Google Scholar 

  22. Hokfelt, T., Johansson, O., Ljungdahl, A., Lunberg, J. M. & Schultzberg, M. Nature 284, 515–521 (1980).

    Article  ADS  CAS  Google Scholar 

  23. Lunberg, J. M. & Hokfelt, T. Trends Neurosci. 6, 325–333 (1983).

    Article  Google Scholar 

  24. Louis, J. C. et al. J. Neurochem. 41, 930–938 (1983).

    Article  CAS  Google Scholar 

  25. Kawatani, M. et al. Neurosci. Lett. 39, 143–148 (1983).

    Article  CAS  Google Scholar 

  26. Konishi, S., Teunoo, A. & Oteuka, M. Nature 294, 80–82 (1981).

    Article  ADS  CAS  Google Scholar 

  27. Weiler, R., Ball, A. K. & Stell, W. K. Soc. Neurosci. Abstr. 9, 896 (1983).

    Google Scholar 

  28. Jan, Y. N. & Jan, L. Y. Trends Neurosci. 6, 320–325 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watt, C., Su, Yy. & Lam, DK. Interactions between enkephalin and GABA in avian retina. Nature 311, 761–763 (1984). https://doi.org/10.1038/311761a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/311761a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing