Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Photoelectrochemical pumping of enzymatic CO2 reduction

Abstract

The need for renewable resources of carbon-based fuels and chemicals has focused on methods by which carbon dioxide could be utilized as the initial substrate. However, most of these methods have tended to be inefficient, both in terms of energy losses involved during CO2 fixation and in the lack of specificity in the final products. We report here a novel approach for the fixation of CO2 which combines a semiconductor photoelectrode (p-type indium phosphide, p-InP) with a biological catalyst (a formate dehydrogenase enzyme) to effect the first step, a two-electron reduction of CO2 to formic acid. Photogenerated electrons in the semiconductor, which can be coupled to the enzyme through a mediator, can be produced with light of wavelengths shorter than 900 nm (>1.35eV) so that much of the energy of the solar spectrum could be captured for this process. The process is analogous to natural photosynthesis but has the potential to be more efficient at light collection and more specific in the production of reduced carbon species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Parkinson, B. A., Heller, A. & Miller, B. Appl. phys. Lett. 36, 521–523 (1978).

    Article  ADS  Google Scholar 

  2. Gronet, C. M. & Lewis, N. S. Nature 300, 733–735 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Heller, A. Accts. chem. Res. 14, 151–162 (1981).

    ADS  Google Scholar 

  4. Heller, A. & Vadimsky, R. G. Phys. Rev. Lett. 46, 1153–1155 (1981).

    Article  ADS  CAS  Google Scholar 

  5. Aharon-Shalom, E. & Heller, A. J. phys. Chem. 87, 4913–4920 (1983).

    Article  CAS  Google Scholar 

  6. Levy-Clement, Heller, A., Bonner, W. A. & Parkinson, B. A. J. electrochem. Soc. 129, 1701–1705 (1982).

    Article  CAS  Google Scholar 

  7. Halman, H. Nature 275, 115–116 (1978).

    Article  ADS  Google Scholar 

  8. Inoue, T., Fujishima, A., Konishi, S. & Honda, K. Nature 277, 637–638 (1979).

    Article  ADS  CAS  Google Scholar 

  9. Ulman, M., Tinnemans, A. H. A., Mackor, A., Aurian-Blajeni, B. & Halman, M. Int. J. Sol. Energy, 1, 213–220 (1982).

    Article  CAS  Google Scholar 

  10. Heller, A., Miller, B. & Thiel, F. A. Appl. phys. Lett. 38, 282–285 (1981).

    Article  ADS  CAS  Google Scholar 

  11. Peck, H. D. & Gest, H. J. Bact. 73, 706–721 (1957).

    CAS  PubMed  Google Scholar 

  12. Ljungdahl, L. G. & Wood, H. A. Rev. Microbiol. 23, 515–538 (1969).

    Article  CAS  Google Scholar 

  13. Klibanov, A. M., Alberti, B. A. & Zale, S. E. Biotechnol. Bioengng 24, 35–36 (1982).

    Article  Google Scholar 

  14. Thauer, R. K., Fuchs, G. & Jungermann, K. Iron Sulfur Proteins Vol. 3 (ed. Lovenberg, W.) 121–156 (Academic, New York, 1977).

    Google Scholar 

  15. Wood, J. G. & Gest, H. Meth. Enzym. 3, 285–292 (1957).

    Article  Google Scholar 

  16. Ruschig, U., Müller, U., Willnow, P. & Höpner, T. Eur. J. Biochem. 70, 325–330 (1976).

    Article  CAS  Google Scholar 

  17. Weliky, N. et al. Trans. N. Y. Acad. Sci: 34, 647–663 (1972).

    Article  CAS  Google Scholar 

  18. Krampitz, L. O. Clean Fuels from Biomass and Wastes, 141 (Institute of Gas Technology Press, Chicago, 1977).

    Google Scholar 

  19. Williams, R., Crandall, R. S. & Bloom, A. Appl. phys. Lett. 33, 381–383 (1978).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parkinson, B., Weaver, P. Photoelectrochemical pumping of enzymatic CO2 reduction. Nature 309, 148–149 (1984). https://doi.org/10.1038/309148a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/309148a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing