Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

NMR of albite–microcline series

Abstract

The chemical bonding in silicates has been studied experimentally and theoretically1. Spinning at 54.72° yields sharp peaks in NMR patterns for 29Si and 27Al (refs 2, 3). Qualitative interpretation of the isotropic chemical shift is useful, but the interrelated effects of framework geometry, cation substitution and hydrogen bonding must be quantified for zeolites. The isotropic chemical shift for 29Si in silica polymorphs is related to the mean secant of adjacent Si–O…Si angles4, and the complex NMR patterns of tridymite and uncalcined fluoride silicalite have been interpreted quantitatively (see also refs 5, 6). In some zeolites7, the average Si–O–T (tetrahedral) angle is correlated with the isotropic chemical shift for 29Si. The proposed relationships8,9 between mean Si–O distance and the isotropic chemical shift for 29Si are poorly obeyed by silica polymorphs4, and the cation-oxygen bond strength provides a better correlation than Si–O for a wide range of silicates10. We show here that the mean secant Si–O–T provides a better guide than Si–O and bond strength for Na,K-feldspars in the series between low albite and low microcline.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gibbs, G. V. Am. Miner. 67, 421–450 (1982).

    CAS  Google Scholar 

  2. Lippmaa, E., Mägi, M., Samoson, A., Engelhardt, G. & Grimmer, A.-R. J. Am. chem. Soc. 102, 4889–4893 (1980).

    Article  CAS  Google Scholar 

  3. Fyfe, C. A., Gobbi, G. C., Klinowski, J., Thomas, J. M. & Ramdas, S. Nature 296, 530–533 (1982).

    Article  ADS  CAS  Google Scholar 

  4. Smith, J. V. & Blackwell, C. S. Nature 303, 223–225 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Nagy, J. B., Gilson, J.-P. & Derouane, E. G. JCS Chem. Commun. 1129–1131 (1981).

  6. Nagy, J. B., Gabelica, Z., Derouane, E. G. & Jacobs, P. A. Chem. Lett., Jap. 2003–2006 (1982).

    Article  Google Scholar 

  7. Jarman, R. H. JCS Chem. Commun. 512–513 (1983).

  8. Grimmer, A.-R., Peter, R., Fechner, E. & Molgedy, G. Chem. phys. Lett. 77, 331–334 (1981).

    Article  ADS  CAS  Google Scholar 

  9. Higgins, J. B. & Woessner, D. E. EOS 63, 1139 (1982).

    Google Scholar 

  10. Smith, K. A., Kirkpatrick, R. J., Oldfield, E. & Henderson, D. M. Am. Miner. 68, 1206–1215 (1983).

    CAS  Google Scholar 

  11. Hovis, G. L. Geol. Soc. Am. Abstr. Progr. 15, 599 (1983).

    Google Scholar 

  12. Hovis, G. L. & Peckins, E. Contr. Miner. Petrol. 66, 345–349 (1978).

    Article  ADS  CAS  Google Scholar 

  13. Williams, B. L. & Hartman, J. S. Min. Ass. Can. Meet., Victoria, British Columbia (1983).

  14. Murdoch, J. B., Stebbins, J. F., Carmichael, I. S. E., Miller, J. M. & Pines, A. EOS 64, 353 (1983).

    Google Scholar 

  15. Smith, J. V. Feldspar Minerals (Springer, Heidelberg, 1974).

    Google Scholar 

  16. Harlow, G. E. & Brown, G. E. Jr Am. Miner. 65, 986–995 (1980).

    Google Scholar 

  17. Brown, B. E. & Bailey, S. W. Acta crystallogr. 17, 1391–1400 (1964).

    Article  CAS  Google Scholar 

  18. Dal Negro, A., De Pieri, R., Quareni, S. & Taylor, W. H. Acta crystallogr. B34, 2699–2707 (1978).

    Article  Google Scholar 

  19. Brown, I. D. & Shannon, R. D. Acta crystallogr. A29, 266–282 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, J., Blackwell, C. & Hovis, G. NMR of albite–microcline series. Nature 309, 140–142 (1984). https://doi.org/10.1038/309140a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/309140a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing