Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sterenes in suspended particulate matter in the eastern tropical North Pacific

Abstract

Particulate matter in the oceans is operationally partitioned into two pools. Large ( 32 µm) particles, such as zooplankton faecal pellets and marine snow, sink rapidly and dominate the vertical flux of organic matter in the oceans1–4. These relatively rare particles, usually collected in sediment traps, sink at rates of tens to hundreds of metres per day5–8 leading to a significant flux of labile particulate organic matter from sites of production in the euphotic and mesopelagic zones to the deep ocean9–14. Finer ( 2 µm) suspended material, on the other hand, dominates the standing stock of particulate matter1. Sinking rates of only a few metres per day for small particles result in long residence times in the water column during which major transformations of the suspended organic matter may occur. Source and transformation processes involving particulate organic matter in seawater and Recent sediments may be traced by studying various classes of specific organic marker compounds, including the steroids9,11,15–18. We report here the apparent production of sterenes (steroidal alkenes) on suspended particulate matter within the oxygen minimum zone in the equatorial Pacific Ocean off central Mexico; this provides further evidence of the importance of water column processes on early stages of the transformation of biogenic sterols to the steranes present in mature sediments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. McCave, I. Deep-Sea Res. 22, 491–502 (1975).

    Google Scholar 

  2. Honjo, S. J. mar. Res. 38, 53–97 (1980).

    CAS  Google Scholar 

  3. Urerre, M. A. & Knauer, G. A. J. Plankton Res. 3, 369–387 (1981).

    Article  Google Scholar 

  4. Silver, M. W. & Alldredge, A. L. J. mar. Res. 39, 510–530 (1981).

    Google Scholar 

  5. Honjo, S. & Roman, M. R. J. mar. Res. 36, 45–57 (1978).

    Google Scholar 

  6. Small, L. F., Fowler, S. W. & Ünlü, M. Y. Mar. Biol. 51, 233–241 (1979).

    Article  Google Scholar 

  7. Bruland, K. W. & Silver, M. W. Mar. Biol. 63, 295–300 (1981).

    Article  Google Scholar 

  8. Madin, L. P. Mar. Biol. 67, 39–45 (1982).

    Article  Google Scholar 

  9. Wakeham, S. G. et al. Nature 286, 798–800 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Lee, C. & Cronin, C. J. mar. Res. 40, 227–251 (1982).

    CAS  Google Scholar 

  11. Gagosian, R. B., Smith, S. O. & Nigrelli, G. E. Geochim. cosmochim. Acta 46, 1163–1172 (1982).

    Article  ADS  CAS  Google Scholar 

  12. Wakeham, S. G. Geochim. cosmochim. Acta 46, 2239–2257 (1982).

    Article  ADS  CAS  Google Scholar 

  13. De Baar, H. J. W., Farrington, J. W. & Wakeham, S. G. J. mar. Res. 41, 19–41 (1983).

    Article  CAS  Google Scholar 

  14. Tanoue, E. & Handa, N. J. Oceanogr. Soc. Japan 36, 231–245 (1980).

    Article  Google Scholar 

  15. Mackenzie, A. S., Brassell, S. C., Eglinton, G. & Maxwell, J. R. Science 217, 491–504 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Gagosian, R. B. & Farrington, J. W. Geochim. cosmochim. Acta 42, 1091–1101 (1978).

    Article  ADS  CAS  Google Scholar 

  17. Gagosian, R. B., Smith, S. O., Lee, C., Farrington, J. W. & Frew, N. M. Adv. org. Geochem. 12, 407–419 (1980).

    CAS  Google Scholar 

  18. Smith, D. J., Eglinton, G., Morris, R. J. & Poutanen, E. L. Oceanol. Acta 5, 365–378 (1982).

    CAS  Google Scholar 

  19. Broenkow, W. W. & Krenz, R. T. Moss Landing mar. Lab. tech. Publ. 82-1, 82 pp (1982).

    Google Scholar 

  20. Broenkow, W. W., Lewitus, A. J., Yarbrough, M. A. & Krenz, R. T. Nature 302, 329–331 (1983).

    Article  ADS  Google Scholar 

  21. Cline, J. D. & Richards, F. A. Limnol. Oceanogr. 17, 885–900 (1972).

    Article  ADS  CAS  Google Scholar 

  22. Grob. K., Grob, G., Blum, W. & Walther, W. J. Chromatogr. 244, 197–208 (1982).

    Article  CAS  Google Scholar 

  23. Giger, W. & Schaffner, C. Naturwissenschaften 68, 37–39 (1981).

    Article  ADS  CAS  Google Scholar 

  24. McEvoy, J. thesis, Univ. Bristol (1983).

  25. Wardroper, A. M. K. thesis, Univ. Bristol (1979).

  26. Flanagan, V. P., Ferretti, A. & Ruth, J. M. Lipids 9, 471–475 (1974).

    Article  CAS  Google Scholar 

  27. Tökes, L., Jones, G. & Djerassi, C. J. Am. chem. Soc. 90, 5465–5477 (1968).

    Article  Google Scholar 

  28. Djerassi, C. Pure appl. Chem. 50, 171–184 (1978).

    Article  CAS  Google Scholar 

  29. Wyllie, S. G. & Djerassi, C. J. org. Chem. 33, 305–313 (1968).

    Article  CAS  Google Scholar 

  30. Budzikiewicz, H. in Biochemical Applications of Mass Spectrometry (ed. Waller, G. R.) 251–290 (Wiley, New York, 1972).

    Google Scholar 

  31. Dastillung, M. & Albrecht, P. Nature 269, 678–679 (1977).

    Article  ADS  CAS  Google Scholar 

  32. Hamilton, R. J., Raie, M. Y., Weatherston, L., Brooks, C. J. & Borthwick, J. H. JCS Perkin I, 254–357 (1975).

  33. Charney, W. & Herzog, H. L. Microbial Transformations of Steroids (Academic, New York, 1967).

    Google Scholar 

  34. Parmentier, G. & Eyssen, H. Biochim. biophys. Acta 348, 279–284 (1974).

    Article  CAS  Google Scholar 

  35. Iizuka, H. & Naito, H. Microbial Transformation of Steroids and Alkaloids (University Park, Pennsylvania, 1967).

    Google Scholar 

  36. Taylor, C. D., Smith, S. O. & Gagosian, R. B. Geochim. cosmochim. Acta 45, 2161–2168 (1981).

    Article  ADS  CAS  Google Scholar 

  37. Bird, C. W., Lynch, J. M., Pirt, S. J. & Reid, W. W. Tetrahedron Lett., 3189–3190 (1971).

  38. DeRosa, M., Gambacorta, A., Minale, L. & Bullock, J. D. Chem. Commun. 619–620 (1971).

  39. DeRosa, M., Gambacorta, A., Minale, L. & Bullock, J. D. Phytochemistry 12, 117–123 (1973).

    Google Scholar 

  40. Van Dorsselaer, A. et al. Tetrahedron Lett., 1349–1352 (1974).

  41. Rhead, M. M., Eglinton, G. & Draffen, G. H. Chem. Geol. 8, 277–297 (1971).

    Article  ADS  CAS  Google Scholar 

  42. Rubenstein, I., Sieskind, O. & Albrecht, P. JCS Perkin I, 1833–1836 (1975).

  43. Sieskind, O., Joly, G. & Albrecht, P. Geochim. cosmochin. Acta 43, 1675–1970 (1979).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wakeham, S., Gagosian, R., Farrington, J. et al. Sterenes in suspended particulate matter in the eastern tropical North Pacific. Nature 308, 840–843 (1984). https://doi.org/10.1038/308840a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/308840a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing