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Observation and things observed 
A persuasive account has at last been given of the probability spread of quantities that cannot 
simultaneously be measured: measuring devices enter equally with the systems measured. 
EVERYBODY knows that it is not possible 
simultaneously to measure accurately the 
position and the momentum of a particle. 
So much has gone without saying for the 
past half-century, and the same applies to 
the members of any other pair of 
canonically conjugate dynamical vari
ables, say energy and time. More generally, 
the minimum uncertainties of two simul
taneous measurements of, say, position 
and momentum are inversely related to 
each other in the sense that the product of 
the two uncertainties is not less than some 
constant which turns out to be Planck's 
constant divided by 2 n, called If for short. 
This is how Heisenberg's Uncertainty 
principle has instructed us since 1925. 

Nothing in what follows is to be read as a 
contradiction of Heisenberg's principle but 
only as a gloss on it prompted by an in
triguing discussion of the problem of sim
ultaneous measurement by K. Wodkiewicz 
of the University of Rochester (Phys. Rev. 
Lett. 52, 1064; 1984). One way of putting 
his question is to ask what can be said about 
the statistical distribution of the 
momentum of some particle, say an 
electron, whose motion is sufficiently well 
understood for it to be represented by a 
wave function which is a solution of 
SchrOdinger's equation. The standard 
solution for the simplest case of all, a part
icle moving freely through a force-free 
region, is elementary - the wave function 
is a plane wave, and the implication is that 
the particle is equally likely to be found 
anywhere in the infinite accessible region. 
The momentum distribution is equally 
simple - it consists simply of the mo
mentum corresponding numerically to the 
wave vector of the plane wave - a single 
point in momentum space. 

More complicated dynamical systems 
naturally lead to a more complicated dual 
relationship between the probability dis
tribution of a position coordinate and its 
conjugate momentum. But if a wave 
function (in terms of the position co
ordinate) can be found for the stationary 
state of the system, it is always possible to 
calculate the expected value of the mo
mentum, and the successive moments 
about this mean, by the simple rules of 
quantum mechanics or wave mechanics. 
But why not go the whole hog, and from 
the outset calculate the probability distrib
ution in some two-dimensional space 
(phase space) whose dimensions represent 
position (q) and momentum (p)? 

Wodkiewicz points out that this 

question was first tackled in 1932 by 
Eugene Wigner, but a footnote to that 
paper (Phys. Rev. 40, 749; 1932) remarks 
cryptically that Wigner's solution of the 
problem "was found by L. Szilard and the 
present author some years ago for another 
purpose". Wigner's limited objective in 
1932 was to find some way of handling 
functions representing dynamical systems 
in which each of a pair of conjugate vari
ables appears, in particular the expression 
for the total energy of the system consisting 
of the sum of its kinetic energy (a function 
of p) and potential energy (a function of q). 
Wigner's goal was to correct classical 
Boltzmann statistics for the effects of 
quantum mechanics that become apparent 
at low temperatures. The byproduct of his 
work was a function of both q and p, called 
W(p,q), with most of the properties that 
would be expected of a probability distrib
ution in phase space. 

Wigner's 1932 result defines the com
bined distribution of a pair of conjugate 
variables in terms of the wave function with 
respect to only one of them, and seems to 
have stood the test of time in spite of its 
deficiencies. If, for exampleflq) is a wave 
function for a particle moving in one 
direction, and thus a solution of 
Schrodinger's equation, the probability 
distribution of q if given by f*(q)f(q) 
(where the asterisk denotes the complex 
conjugate and where it is assumed that the 
wave function has been multiplied by some 
number that makes the total probability 
unity). Wigner's dual function W(p,q) is 
(n1i)- 1 f f*(q + t) f(q-t) exp(2ipt/-1f) . dt 
and was shown to have many of the 
properties required of a joint probability 
distribution. Integrating over one variable 
would, for example, give the probability 
distribution for the other. 

The only other drawback, which Wigner 
pointed out, is that the function W can 
sometimes be negative, and so cannot be a 
true probability. Even so, nearly half a 
century later Wigner (with R. F. 
O'Connell) argued that W is the only 
function that will satisfy what reasonable 
people would require of a joint distribution 
(Phys. Lett. 83A, 145; 1981). 

Not so, says Wodkiewicz, who takes an 
admirably positivist point of view. There is 
no point in talking about phase-space until 
procedures have been specified for measur
ing its coordinates, position q and mom
entum p. He suggests how the job can be 
done using a hypothetical pulsed laser 
whose radiation can interact with a particle 

by means of its electrical field. 
The consequence of the interaction is 

that a detected particle is scattered so that 
the form of its wave function is such that, 
at a great distance from the point of inter
action, information can be gleaned both 
about position and momentum, but only as 
allowed by the uncertainty principle. This 
is the basis of what W odkiewicz calls his 
operational definition of a phase-space 
probability distribution. 

Everybody, but not least Professor 
Eugene Wigner, will be anxious to know 
how the result resembles the old W(p,q) . 
Put briefly, there are on this occasion two 
wave functions to be taken account of, one 
describing the state of the laser beam with 
which the detected particle interacts (f, say) 
and the other describing the state of the 
particle after the interaction (here called g), 
each of which can be used separately to 
define a Wigner-like phase-space distrib
ution which may be called ~(p,q) and 
Wg(p,q) respectively. 

Wodkiewicz's result is geometrically 
very simple (for one space coordinate). The 
value of the probability distribution in 
phase-space at the point (p,q) is obtained 
by displacing the origin of one Wigner 
function (a pattern in two dimensions) to 
that point, multiplying by the other undis
placed Wigner function and then inte
grating over both variables. In simple lan
guage, the result is the overlap between two 
Wigner functions, one for the measuring 
system and one for the particle. Con
veniently, the result cannot be negative. 

This outcome is satisfactory for several 
reasons, but not least because it puts the 
observing system and the thing observed on 
an equal footing. This is precisely what the 
Copenhagen school would have asked for. 
Second, as Wodkiewicz points out, the 
calculation of phase-space probability 
should survive even if the SchrOdinger 
equation were non-linear (which is one way 
in which gravitational forces might be 
taken account of). It goes without saying 
that Wigner's result can be used more con
fidently now that the reasons why it is in
complete can be understood. But with all 
that said, is it not remarkable that after half 
a century of careful examination of the 
meaning of quantum mechanics, during 
which the notion that the measuring instru
ment must be counted part of the system 
measured has been repeatedly raised, it is 
only now that the deficiencies of Wigner's 
calculation should have been ex
plained? JohnMaddox 
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