Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stagnant layers at the bottom of convecting magma chambers

Abstract

The evolution and crystallization of igneous complexes has received much attention from petrologists1–3 and more recently from physicists4–10. Current models emphasize the role of compositional effects. We present here a different viewpoint. Because compositional effects are due to crystallization, they depend on the thermal structure and regime of cold boundary layers in convecting magma chambers, particularly of the bottom layer where the thickest rock sequences form. We have studied purely thermal convection in a large aspect ratio magma chamber which is cooled through both its upper and lower boundaries. We made laboratory fluid dynamical experiments in turbulent and transient conditions and show that a stagnant layer develops at the bottom, isolated from the convective part of the chamber. The essential features of this layer are that it is not affected by mixing and that a significant thermal gradient is maintained across it. These imply peculiar crystallization conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jackson, E. D. U.S. Geol. Surv. Prof. Pap. 358 (1961).

  2. Wager, L. R. & Brown, G. M. Layered Igneous Rocks (Oliver & Boyd, Edinburgh, 1967).

    Google Scholar 

  3. Morse, S. A. J. Petrol. 20, 555–624 (1979).

    Article  ADS  CAS  Google Scholar 

  4. McBirney, A. R. & Noyes, R. M. J. Petrol. 20, 487–554 (1979).

    Article  ADS  Google Scholar 

  5. Chen, C. F. & Turner, J. S. J. geophys. Res. 85, 2573–2593 (1980).

    Article  ADS  CAS  Google Scholar 

  6. Turner, J. S. Nature 285, 213–215 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Irvine, T. N. in Physics of Magmatic Processes (ed. Hargraves, R. B.) 325–383 (Princeton University Press, 1980).

    Google Scholar 

  8. Huppert, H. E. & Sparks, R. S. J. Nature 286, 46–58 (1980); Contr. Miner. Petrol. 75, 279–289 (1980).

    Article  ADS  CAS  Google Scholar 

  9. Huppert, H. E. & Turner, J. S. Earth planet. Sci. Lett. 54, 144–152 (1981).

    Article  ADS  CAS  Google Scholar 

  10. Usselman, T. M. & Hodge, D. S. J. Volcanol. geotherm. Res. 4, 265–281 (1978).

    Article  ADS  Google Scholar 

  11. Busse, F. H. Rep. Prog. Phys. 41, 1930–1967 (1978).

    Article  ADS  Google Scholar 

  12. Kraichnan, R. H. Phys. Fluids 5, 1374–1389 (1962).

    Article  ADS  Google Scholar 

  13. Jaupart, C. thesis, Massachusetts Instit. Technol. (1981).

  14. White, D. thesis, Univ. Cambridge (1982).

  15. Richter, F. M., Nataf, H. C. & Daly, S. F. J. Fluid Mech. 129, 173–192 (1983).

    Article  ADS  Google Scholar 

  16. Murase, T. & McBirney, A. R. Geol. Soc. Am. Bull. 84, 3563–3592 (1973).

    Article  ADS  CAS  Google Scholar 

  17. Richet, P. & Bottinga, Y. Geochim. cosmochim. Acta 44, 1535–1541 (1980).

    Article  ADS  CAS  Google Scholar 

  18. Bottinga, Y., Richet, P. & Weill, D. F. Bull. Miner. 106, 129–138 (1983).

    Article  CAS  Google Scholar 

  19. Urbain, G., Bottinga, Y. & Richet, P. Geochim. cosmochim. Acta 46, 1061–1072 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Merzkirch, W. Flow Visualization (Academic, New York, 1974).

    MATH  Google Scholar 

  21. Sparrow, E. M., Husar, R. B. & Goldstein, R. J. J. Fluid. Mech. 41, 793–800 (1970).

    Article  ADS  Google Scholar 

  22. Turner, J. S. Buoyancy Effects in Fluids (Cambridge University Press, 1973).

    Book  Google Scholar 

  23. Gill, A. E. J. Fluid Mech. 26, 515–536 (1966).

    Article  ADS  Google Scholar 

  24. Baines, W. D. & Turner, J. S. J. Fluid Mech. 37, 51–80 (1969).

    Article  ADS  Google Scholar 

  25. Donaldson, C. H. Miner. Mag. 41, 323–336 (1977).

    Article  CAS  Google Scholar 

  26. Samoylovitch, Y. A. Geochem. Int. 16, 79–84 (1979).

    Google Scholar 

  27. Brandeis, G., Jaupart, C. & Allègre, C.J. J. geophys. Res. (submitted).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaupart, C., Brandeis, G. & Allègre, C. Stagnant layers at the bottom of convecting magma chambers. Nature 308, 535–538 (1984). https://doi.org/10.1038/308535a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/308535a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing