Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Determination of the Si–O–Si bond angle distribution in vitreous silica by magic angle spinning NMR

Abstract

A necessary condition for any proposed description of the structure of glass is that a model of the glass will reproduce the details of the pair correlation function which may be determined from elastic scattering experiments (X-ray, neutron or electron diffraction). From a knowledge of the structure, excitations (electronic or vibrational) may be deduced. The most extensively studied prototype glass is vitreous SiO2. It has long been recognized that the SiO2 tetrahedra are well preserved in the glass and that it is the interconnection of the tetrahedra which provides the clue to the lack of translational symmetry characteristic of the glassy state. The natural approach has been to build macroscopic models of the structure which satisfy the bond conductivity between atoms whilst preserving the regularity of the SiO2 tetrahedra. When completed the models are scaled and tested against diffraction data and the macroscopic density. Here, magic angle spinning nuclear magnetic resonance (NMR) spectroscopy has been applied to glassy SiO2. The observed line-shape allows the published distribution functions for the Si–O–Si bond angle, crucial in determining the structure of vitreous SiO2, to be tested. All of the published distribution functions are inconsistent with our data and a new distribution is proposed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ordway, F. Science 143, 800–801 (1964).

    Article  CAS  ADS  Google Scholar 

  2. Bell, R. J. & Dean, P. Phil. Mag. 25, 1381–1398 (1972).

    Article  CAS  ADS  Google Scholar 

  3. Evans, D. L. & King, S. V. Nature 212, 1353–1354 (1966).

    Article  CAS  ADS  Google Scholar 

  4. Evans, D. L. & Teter, M. in The Structure of Non-Crystalline Solids (ed. Gaskell, P. H.) 53–57 (Taylor & Francis, London, 1977).

    Google Scholar 

  5. Ching, W. Y. Phys. Rev. 26, 6610–6621 (1982).

    Article  CAS  ADS  Google Scholar 

  6. Mitra, S. K. Phil. Mag. 45 B, 529–548 (1982).

    Article  CAS  Google Scholar 

  7. Mozzi, R. L. & Warren, B. E. J. appl. Crystallogr. 2, 164–172 (1969).

    Article  CAS  Google Scholar 

  8. Henninger, E. H., Bushart, R. C. & Heaton, L. J. phys. Chem. Solids 28, 423–432 (1967).

    Article  CAS  ADS  Google Scholar 

  9. Konnert, J. H. & Karle, J. Acta crystallogr. 29 A, 702–710 (1973).

    Article  CAS  Google Scholar 

  10. Da Silva, J. R. G., Pinatti, D. G., Anderson, C. E. & Rudee, M. L. Phil. Mag. 31, 713–717 (1975).

    Article  CAS  ADS  Google Scholar 

  11. Wright, A. C. & Leadbetter, A. J. Phys. Chem. Glasses 17, 122–145 (1976).

    CAS  Google Scholar 

  12. Greaves, G. N., Fontaine, A., Lagarde, P., Roux, D. & Gurman, S.J. Nature 293, 611–616 (1981).

    Article  CAS  ADS  Google Scholar 

  13. Lippmaa, E., Magi, M., Samoson, A., Engelhardt, G. & Grimmer, A. R. J. Am. chem. Soc. 102, 4889–4893 (1980).

    Article  CAS  Google Scholar 

  14. Klinowski, J., Thomas, J. M., Fyfe, C. A. & Hartmann, J. S. J. phys. Chem. 85, 2590–2594 (1980).

    Article  Google Scholar 

  15. Smith, J. V. & Scott Blackwell, C. Nature 303, 223–225 (1983).

    Article  CAS  ADS  Google Scholar 

  16. Newton, M. D. & Gibbs, G. V. Phys. Chem. Minerals 6, 221–246 (1980).

    Article  CAS  ADS  Google Scholar 

  17. Harris, R. K. & Mann, B. E. (eds) N.M.R. and the Periodic Table (Academic, New York, 1978).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dupree, E., Pettifer, R. Determination of the Si–O–Si bond angle distribution in vitreous silica by magic angle spinning NMR. Nature 308, 523–525 (1984). https://doi.org/10.1038/308523a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/308523a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing