Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Conservative segregation of nucleosome core histones

Abstract

Density labelling studies have shown that nascent histones are not mixed with parental histones during the assembly of nucleosome cores1,2. However, experiments in other laboratories, examining histone deposition with respect to newly synthesized DNA, have been interpreted as suggesting that a substantial proportion of core histones (>15%) are randomized at each chromatin replication3–8. The data presented here support our previous results in showing that conservatively assembled nucleosome core histone octamers are conservatively segregated over successive cell generations. It is also shown that the nucleosome cores assembled during 1-β-D-arabinofuranosylcytosine inhibition of DNA synthesis are conservatively segregated for a minimum of five or six cell generations. These results suggest that the nonrandom assembly of nucleosome cores is not merely a coincidence of the mechanism of histone transport into the nucleus and that the conservative mode of nucleosome segregation is a fundamental feature of chromatin replication, one which is stable to modulations in chromatin packaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Leffak, I. M., Grainger, R. & Weintraub, H. Cell 12, 837–845 (1977).

    Article  CAS  Google Scholar 

  2. Leffak, I. M. Nucleic Acids Res. 11, 2717–2732 (1983).

    Article  CAS  Google Scholar 

  3. Russev, G. & Hancock, R. Nucleic Acids Res. 9, 4129–4137 (1981).

    Article  CAS  Google Scholar 

  4. Hancock, R. Proc. natn. Acad. Sci. U.S.A. 75, 2130–2134 (1978).

    Article  ADS  CAS  Google Scholar 

  5. Jackson, V., Marshall, S. & Chalkley, R. Nucleic Acids Res. 9, 4563–81 (1981).

    Article  CAS  Google Scholar 

  6. Jackson, V. & Chalkley, R. Cell 23, 121–134 (1981).

    Article  CAS  Google Scholar 

  7. Annunziato, A. T., Schindler, R. K., Riggs, M. K. & Seale, R. L. J. biol. Chem. 257, 8507–8515 (1982).

    CAS  PubMed  Google Scholar 

  8. Jackson, V. & Chalkley, R. J. biol. Chem. 256, 5095–5103 (1981).

    CAS  PubMed  Google Scholar 

  9. Akiyama, Y. & Kato, S. Biken J. 17, 105–116 (1974).

    CAS  PubMed  Google Scholar 

  10. Leffak, I. M. Nucleic Acids Res. 11, 5451–5466 (1983).

    Article  CAS  Google Scholar 

  11. Prior, C. P., Cantor, C. R., Johnson, E. V. & Allfrey, V. G. Cell 20, 597–608 (1980).

    Article  CAS  Google Scholar 

  12. Weintraub, H. Cold Spring Harb. Symp. quant. Biol. 38, 247–256 (1973).

    Article  Google Scholar 

  13. Weintraub, H. Cell 9, 419–422 (1976).

    Article  CAS  Google Scholar 

  14. Seale, R. L. Cell 9, 423–429 (1976).

    Article  CAS  Google Scholar 

  15. Freedlender, E. F., Taichman, L. & Smithies, O. Biochemistry 16, 1802–1808 (1977).

    Article  CAS  Google Scholar 

  16. Riley, D. & Weintraub, H. Proc. natn. Acad. Sci. U.S.A. 76, 328–332 (1979).

    Article  ADS  CAS  Google Scholar 

  17. Seidman, M. M., Levine, A. J. & Weintraub, H. Cell 18, 439–450 (1979).

    Article  CAS  Google Scholar 

  18. Roufa, D. Cell 13, 129–138 (1978).

    Article  CAS  Google Scholar 

  19. Roufa, D. & Marchionni, M. A. Proc. natn. Acad. Sci. U.S.A. 79, 1810–1814 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Fowler, E., Farb, R. & El-Saidy, S. Nucleic Acids Res. 10, 735–748 (1982).

    Article  CAS  Google Scholar 

  21. Pospelov, V., Russev, G., Vassilev, L. & Tsanev, R. J. molec. Biol. 156, 79–91 (1982).

    Article  CAS  Google Scholar 

  22. Leffak, I. M. Analyt. Biochem. (in the press).

  23. Laemmli, U. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  24. Laskey, R. A. & Mills, A. D. Eur. J. Biochem. 56, 335–341 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leffak, I. Conservative segregation of nucleosome core histones. Nature 307, 82–85 (1984). https://doi.org/10.1038/307082a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/307082a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing