Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Alternative RNA splicing in expression of the H–2Kgene

Abstract

A major role of the classical transplantation antigens (designated class I antigens) is the presentation of virus-infected cells to cytotoxic T cells, a process that leads to the destruction of the cell displaying the viral antigen1. Consistent with this function is the finding that these transplantation antigens (encoded by the H–2K, H–2D and H–2L genes in mice) are cell-surface glycoproteins with their ammo-termini protruding extracel-lularly and their carboxy-termini located inside the cell2,3. While the external domain is expected to provide biological specificity required for the associative presentation of viral antigens, the role of the cytoplasmic domain remains obscure.The recent observation that this latter region of the molecule is encoded by three separate DNA exons4–9 has suggested a complex role for this portion of the polypeptide chain. We have now obtained evidence for the use of alternative acceptor splice sites in the H–2K gene, resulting in two RNA transcripts that would encode H–2K antigens differing in their carboxy-termini. This is the first demonstration of the use of alternative splice acceptor sites in the same class I gene, and indicates the existence of different functional subsets of antigens encoded by the same gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zinkernagel, R. M. & Doherty, P. C. Adv. Immun. 27, 51–177 (1979).

    Article  CAS  Google Scholar 

  2. Nathenson, S. G., Uehara, H., Ewenstein, B. M., Kindt, T. J. & Coligan, J. E. A. Rev. Biochem. 50, 1025–1052 (1981).

    Article  CAS  Google Scholar 

  3. Ploegh, H. L., Orr, H. T. & Strominger, J. L. Cell 24, 287–299 (1981).

    Article  CAS  Google Scholar 

  4. Steinmetz, M. et al. Cell 25, 683–692 (1981).

    Article  CAS  Google Scholar 

  5. Malissen, M., Malissen, B. & Jordan, B. R. Proc. natn. Acad. Sci. U.S.A. 79, 893–897 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Moore, K. W., Sher, B. T., Sun, Y. H., Eakle, K. A. & Hood, L. Science 215, 679–682 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Evans, G. A., Margulies, D. H., Camerini-Otero, R. D., Ozato, K. & Seidman, J. G. Proc. natn. Acad. Sci. U.S.A. 79, 1994–1998.

  8. Kvist, S., Roberts, L. & Dobberstein, B. EMBO J. 2, 245–254 (1983).

    Article  CAS  Google Scholar 

  9. Weiss, E. et al. EMBO J. 2, 453–462 (1983).

    Article  CAS  Google Scholar 

  10. Cosman, D., Khoury, G. & Jay, G. Nature 295, 73–76 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Kress, M., Liu, W.-Y., Jay, E., Khoury, G. & Jay, G. J. biol. Chem. (in the press).

  12. Cosman, D., Kress, M., Khoury, G. & Jay, G. Proc. natn. Acad. Sci. U.S.A. 79, 4947–4951 (1982).

    Article  ADS  CAS  Google Scholar 

  13. Bolivar, F. et al. Gene 2, 95–113 (1977).

    Article  CAS  Google Scholar 

  14. Mellor, A. L. et al. Nature 298, 529–534 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Goodenow, R. S. et al. Nature 300, 231–237 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Breathnach, R., Benoist, C., O'Hare, K., Gannon, F. & Chambon, P. Proc. natn. Acad. Sci. U.S.A. 75, 4853–4857 (1978).

    Article  ADS  CAS  Google Scholar 

  17. Seif, I., Khoury, G. & Dhar, R. Nucleic Acids Res. 6, 3387–3398 (1979).

    Article  CAS  Google Scholar 

  18. Lalanne, J. L. et al. Nucleic Acids Res. 10, 1039–1049 (1982).

    Article  CAS  Google Scholar 

  19. Lalanne, J. L., Delarbre, C., Gachelin, G. & Kourilsky, P. Nucleic Acids Res. 11, 1576–1577 (1983).

    Article  Google Scholar 

  20. Reyes, A. A., Schold, M., Itakura, K. & Wallace, R. B. Proc. natn. Acad. Sci. U.S.A. 79, 3270–3274 (1982).

    Article  ADS  CAS  Google Scholar 

  21. Reyes, A. A., Schold, M. & Wallace, R. B. Immunogenetics 16, 1–9 (1982).

    Article  CAS  Google Scholar 

  22. Signas, C., Katze, M. G., Persson, H. & Philipson, L. Nature 299, 175–178 (1982).

    Article  ADS  CAS  Google Scholar 

  23. Zuniga, M. C. et al. Cell 34, 535–544 (1983).

    Article  CAS  Google Scholar 

  24. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  25. Rigby, P. W. J., Dieckmann, M., Rhodes, C. & Berg, P. J. molec. Biol. 113, 237–251 (1977).

    Article  CAS  Google Scholar 

  26. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

  27. Messing, J. & Vieira, J. Gene 19, 269–276 (1982).

    Article  CAS  Google Scholar 

  28. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kress, M., Glaros, D., Khoury, G. et al. Alternative RNA splicing in expression of the H–2Kgene. Nature 306, 602–604 (1983). https://doi.org/10.1038/306602a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/306602a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing