Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Absence of cooperative haemoglobin–oxygen binding in Sphenodon, a reptilian relict from the Triassic

Abstract

It is generally accepted that the sigmoidal nature of the haemoglobin–oxygen dissociation curve (ODC) is necessary for efficient oxygen transport in terrestrial vertebrates because it allows large volumes of oxygen to be bound or released for relatively small changes in the partial pressure of oxygen( P O 2 ) in the blood. Furthermore, the amount of oxygen to tissues is increased by hydrogen ions produced from the dissociation of carbon dioxide in solution1,2. The generality of these key features of cooperative oxygen binding and the Bohr effect holds for reptiles, birds and mammals3–7, including representatives with special respiratory requirements for diving8–11, burrowing12,13 and living at high altitude14,15. Sphenodon punctatus is the sole surviving representative of the ancient order of ‘beakhead’ reptiles (order Rhynchocephalia) which were once widely distributed during the Triassic period before the spectacular radiation of dinosaur faunas. We have now investigated the oxygen transporting properties of blood from Sphenodon and find that the ODC is hyperbolic, with a high affinity for oxygen and very small Bohr effect. This combination of characteristics is unique among terrestrial vertebrates and accords with a low demand for oxygen and limited scope for aerobic activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Perutz, M. F. Nature 228, 726–739 (1970).

    Article  ADS  CAS  Google Scholar 

  2. Perutz, M. F. Scient. Am. 239, 66–86 (1978).

    Article  Google Scholar 

  3. Wood, S. C. & Lenfant, C. in Evolution of Respiratory Processes (ed. Lenfant, C.) 193–223 (Dekker, New York, 1979).

    Google Scholar 

  4. Isaacks, R. E. & Harkness, D. R. Am. Zool. 20, 115–129.

  5. Lutz, P. L. Am. Zool. 20, 187–198 (1980).

    Article  CAS  Google Scholar 

  6. Pough, F. H. Am. Zool. 20, 173–185 (1980).

    Article  CAS  Google Scholar 

  7. Lapennas, G. N. & Lutz, P. L. Respir. Physiol. 48, 59–74 (1982).

    Article  CAS  Google Scholar 

  8. Wood, S. C. & Johansen, K. J. comp. Physiol. 89, 145–158 (1974).

    Article  CAS  Google Scholar 

  9. Meyer, M., Holle, J. P. & Scheid, P. Pflügers Arch, ges. Physiol. 376, 237–240 (1978).

    Article  CAS  Google Scholar 

  10. Jelkmann, W. & Bauer, C. Comp. Biochem. Physiol. 65A, 331–336 (1980).

    Article  Google Scholar 

  11. Kooyman, G. L., Castellini, M. A. & Davis, R. W. A. Rev. Physiol. 43, 343–356 (1981).

    Article  CAS  Google Scholar 

  12. Lechner, A. J. J. appl. Physiol. 41, 168–173 (1976).

    Article  CAS  Google Scholar 

  13. Johansen, K., Abe, A. S. & Weber, R. E. J. exp. Zool. 214, 71–77 (1980).

    Article  CAS  Google Scholar 

  14. Lenfant, C. Am. Zool. 13, 447–456 (1973).

    Article  Google Scholar 

  15. Black, C. P. & Tenney, S. M. Respir. Physiol. 39, 217–239 (1980).

    Article  CAS  Google Scholar 

  16. Barwick, R. E. in New Zealand Herpetology (ed. Newman, D. G.) 225–236 (New Zealand Wildlife Service, Wellington, 1982).

    Google Scholar 

  17. Newman, D. G., Crook, I. G. & Moran, L. R. Int. zool. Yb. 19, 1–7 (1979).

    Article  Google Scholar 

  18. Dacie, J. V. & Lewis, S. M. Practical Haematology (Livingstone, Edinburgh, 1975).

    Google Scholar 

  19. Saint Girons, M. C. in Biology of the Reptilia (ed. Gans, C.) (Academic, New York, 1970).

    Google Scholar 

  20. Cashel, M., Lazzarini, R. A. & Kalbacher, B. J. Chromatogr. 40, 103–109 (1969).

    Article  CAS  Google Scholar 

  21. Johansen, K., Lykkeboe, G., Weber, R. E. & Maloiy, G. M. O. Respir. Physiol. 27, 335–345 (1976).

    Article  CAS  Google Scholar 

  22. Sigma Technical Bulletin No. 35-UV (1980).

  23. Bartlett, G. R. Analyt. Biochem. 124, 425–431 (1982).

    Article  CAS  Google Scholar 

  24. Bartlett, G. R. Comp. Biochem. Physiol. 61A, 191–202 (1978).

    Article  Google Scholar 

  25. Riggs, A. Meth. Enzym. 76, 5–29 (1981).

    Article  CAS  Google Scholar 

  26. Sullivan, B. Chem. Zool. 9, 377–398 (1974).

    CAS  Google Scholar 

  27. Wood, S. C., Lykkeboe, G., Johansen, K. Weber, R. E. & Maloiy, G. M. O. Comp. Biochem. Physiol. 59A, 155–160 (1978).

    Article  Google Scholar 

  28. Lutz, P. L. & Lapennas, G. N. Respir. Physiol. 48, 75–87 (1982).

    Article  CAS  Google Scholar 

  29. Coates, M. L. J. molec. Evol. 6, 285–307 (1975).

    Article  ADS  CAS  Google Scholar 

  30. Schmidt-Nielsen, K. How Animals Work (Cambridge University Press, 1972).

    Book  Google Scholar 

  31. Tucker, V. A. J. exp. Biol. 44, 77–93 (1966).

    CAS  PubMed  Google Scholar 

  32. Willnow, I. & Willnow, R. Acta anat. 94, 504–519 (1976).

    Article  CAS  Google Scholar 

  33. Lapennas, G. N., Colacino, J. M. & Bonaventura, J. Meth. Enzym. 76, 449–470 (1981).

    Article  CAS  Google Scholar 

  34. Jelkmann, W. & Bauer, C. Analyt. Biochem. 75, 382–388 (1976).

    Article  CAS  Google Scholar 

  35. Benesch, R. E., Benesch, R. & Yung, S. Analyt. Biochem. 55, 245–248 (1973).

    Article  CAS  Google Scholar 

  36. Severinghaus, J. W. in Handbook of Respiration and Circulation (eds Altman, P. L. & Dittmer, D. S.) 218–219 (Fed. Am. Exp. Biol., Bethesda, 1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wells, R., Tetens, V. & Brittain, T. Absence of cooperative haemoglobin–oxygen binding in Sphenodon, a reptilian relict from the Triassic. Nature 306, 500–502 (1983). https://doi.org/10.1038/306500a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/306500a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing