Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dependence of Z-DNA antibody binding to polytene chromosomes on acid fixation and DNA torsional strain

Abstract

There is considerable interest in the existence and significance of alternative conformations of DNA1–4 to the right-handed B-form described originally by Watson and Crick5. The indirect immunofluorescence observations of Nordheim et al.6, Arndt-Jovin et al.7 and Lemeunier et al.8 that antibodies against left-handed Z-DNA bind to polytene chromosomes have thus assumed considerable importance. However, there is a paradox: some workers observe Z-DNA in interbands and others in bands. We report here that binding of Z-DNA antibodies to Drosophila polytene chromosomes prepared without acid fixation is at background level, and that following acid fixation the same antibody treatment leads to intense fluorescence. Depending on the extent of exposure to 45% acetic acid, fluorescence can occur primarily in interbands or in bands. Furthermore, antibody binding is dependent on elastic torsional strain in the DNA molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wang, A. H.-J. et al. Nature 282, 680–686 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Wells, R. D. et al. Prog. Nucleic Acid Res. molec. Biol. 24, 167–267 (1980).

    Article  CAS  Google Scholar 

  3. Cantor, C. R. Cell 25, 293–295 (1981).

    Article  CAS  Google Scholar 

  4. Dickerson, R. E. et al. Science 216, 475–485 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Watson, J. & Crick, F. H. C. Nature 171, 737 (1953).

    Article  ADS  CAS  Google Scholar 

  6. Nordheim, A. et al. Nature 294, 417–422 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Arndt-Jovin, D. J. et al. Proc. natn. Acad. Sci. U.S.A. (in the press).

  8. Lemeunier, F., Derbin, C., Malfoy, B., Leng, M. & Taillandier, E. Expl Cell Res. 141, 508–513 (1982).

    Article  CAS  Google Scholar 

  9. Painter, T. S. Genetics 19, 175–188 (1934).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hill, R. J. & Watt, F. Cold Spring Harb. Symp. quant. Biol. 42, 859–865 (1978).

    Article  Google Scholar 

  11. D'Angelo, E. G. Biol. Bull. 90, 71–87 (1946).

    Article  CAS  Google Scholar 

  12. Silver, L. M. & Elgin, S. C. R. in The Cell Nucleus Vol. 5 (ed. Busch, H.) 215–262 (Academic, New York, 1978).

    Google Scholar 

  13. Hewish, D. R. & Burgoyne, L. A. Biochem. biophys. Res. Commun. 52, 504–510 (1973).

    Article  CAS  Google Scholar 

  14. Mott, M. R., Burnett, E. J. & Hill, R. J. J. Cell Sci. 45, 15–30 (1980).

    CAS  PubMed  Google Scholar 

  15. Hill, R. J. et al. J. Cell Biol. 95, 262–266 (1982).

    Article  CAS  Google Scholar 

  16. Lafer, E. M., Moller, A., Nordheim, A., Stollar, B. D. & Rich, A. Proc. natn. Acad. Sci. U.S.A. 78, 3546–3550 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Nordheim, A. et al. Proc. natn. Acad. Sci. U.S.A. 79, 7729–7733 (1982).

    Article  ADS  CAS  Google Scholar 

  18. Dick, C. & Johns, E. W. Expl Cell Res. 51, 626–632 (1968).

    Article  CAS  Google Scholar 

  19. Germond, J. E., Hint, B., Oudet, P., Gross-Bellard, M. & Chambon, P. Proc. natn. Acad. Sci. U.S.A. 72, 1843–1847 (1975).

    Article  ADS  CAS  Google Scholar 

  20. Singleton, C. K., Klysik, J., Stirdivant, S. M. & Wells, R. D. Nature 299, 312–316 (1982).

    Article  ADS  CAS  Google Scholar 

  21. Peck, L. J., Nordheim, A., Rich, A. & Wang, J. C. Proc. natn. Acad. Sci. U.S.A. 79, 4560–4564 (1982).

    Article  ADS  CAS  Google Scholar 

  22. Nordheim, A. et al. Cell 31, 309–318 (1982).

    Article  CAS  Google Scholar 

  23. Hamada, H., Petrino, M. G. & Kakunaga, T. Proc. natn. Acad. Sci. U.S.A. 79, 6465–6469 (1982).

    Article  ADS  CAS  Google Scholar 

  24. Haniford, D. B. & Pulleyblank, D. E. Nature 302, 632–634 (1983).

    Article  ADS  CAS  Google Scholar 

  25. Nordheim, A. & Rich, A. Proc. natn. Acad. Sci. U.S.A. 80, 1821–1825 (1983).

    Article  ADS  CAS  Google Scholar 

  26. Guschlbaner, W. & Courtois, Y. FEBS Lett. 1, 183–186 (1968).

    Article  Google Scholar 

  27. Jordan, D. O. The Chemistry of Nucleic Acids, 206–216 (Butterworths, London, 1960).

    Google Scholar 

  28. Nickol, J., Behe, M. & Felsenfeld, G. Proc. natn. Acad. Sci. U.S.A. 79, 1771–1775 (1982).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hill, R., Stollar, B. Dependence of Z-DNA antibody binding to polytene chromosomes on acid fixation and DNA torsional strain. Nature 305, 338–340 (1983). https://doi.org/10.1038/305338a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/305338a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing