Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transforming activity of polyoma virus middle-T antigen probed by site-directed mutagenesis

Abstract

The ability of polyoma virus to transform cells results primarily from the action of one of the virus-coded early proteins, called middle-T antigen1–3. Middle-T has an associated tyrosine-specific protein kinase activity that can be measured in vitro and results in the phosphorylation of middle-T itself4–7. Almost all mutants so far tested that lack the ability to transform cells, also lack associated kinase activity2,4. Attempts to map within middle-T the tyrosine residue(s) that are phosphorylated in vitro suggest that a likely site of phosphorylation is tyrosine 315 (refs8–10 and unpublished results). The amino acid sequence preceding Tyr 315 includes a tract of six contiguous glutamic acid residues and bears some homology with that preceding the tyrosine phosphorylated in vivo in pp60v–src, the transforming protein of Rous sarcoma virus11, and with a region in the polypeptide hormone, gastrin, preceding a tyrosine that is sulphated12. Furthermore, although surprisingly large tracts of middle-T may be removed without affecting its transforming activity2,13–16, mutants that lack the sequences corresponding to amino acids 311–318 inclusive are transformation defective. Because the likely site of phosphorylation, the homology with pp60v–src and gastrin and the sequence apparently required for transformation all overlap, it has generally been accepted that this region of middle-T may form part of an essential region, possibly an active site on the protein17. Here we have used techniques of site-directed and site-specific mutagenesis to probe the sequence requirements in more detail. Contrary to expectation, the results obtained strongly suggest that Tyr 315 and conservation of the surrounding amino acid sequence are not essential for transformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tooze, J. DNA Tumor Viruses 2nd edn, Pt 2 (Cold Spring Harbor Laboratory, New York, 1980).

    Google Scholar 

  2. Smith, A. E. & Ely, B. K. in Advances in Viral Oncology Vol. 3 (ed. Klein, G.) 3–30 (Raven, New York, 1983).

    Google Scholar 

  3. Treisman, R., Novak, U., Favaloro, J. & Kamen, R. Nature 292, 595–600 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Smith, A. E., Smith, R., Griffin, B. & Fried, M. Cell 18, 915–924 (1979).

    Article  CAS  PubMed  Google Scholar 

  5. Eckhart, W., Hutchinson, M. A. & Hunter, T. Cell 18, 925–933 (1979).

    Article  CAS  PubMed  Google Scholar 

  6. Schaffhausen, B. S. & Benjamin, T. L. Cell 18, 935–946 (1979).

    Article  CAS  PubMed  Google Scholar 

  7. Smith, A. E., Fried, M., Ito, Y., Spurr, N. & Smith, R. Cold Spring Harb. Symp. quant. Biol. 44, 141–147 (1980).

    Article  CAS  PubMed  Google Scholar 

  8. Smith, A. E. in Protein Phosphorylation and Bioregulation (eds Thomas, G., Podesta, E. & Gordon, J.) 219–228 (Karger, Basel, 1980).

    Google Scholar 

  9. Schaffhausen, B. & Benjamin, T. J. Virol. 40, 184–196 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Schaffhausen, B. & Benjamin, T. in Cold Spring Harbor Conf. Cell Proliferation Vol. 8 (eds Rosen, O. M. & Krebs, E. G.) 1281–1298 (1981).

    Google Scholar 

  11. Smart, J. E. et al. Proc. natn. Acad. Sci. U.S.A. 78, 6013–6017 (1981).

    Article  ADS  CAS  Google Scholar 

  12. Baldwin, G. S. FEBS Lett. 137, 1–5 (1982).

    Article  CAS  PubMed  Google Scholar 

  13. Griffin, B. E. & Maddock, C. J. J. Virol. 31, 645–656 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bendig, M., Thomas, T. & Folk, W. J. Virol. 33, 1215–1219 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Magnusson, G., Nilsson, M. J., Dilworth, S. M. & Smolar, N. J. Virol. 39, 673–683 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Nilsson, S., Tyndall, C. & Magnusson, G. J. Virol. 46, 284–287 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Patschinsky, T., Hunter, T., Esch, F. S., Cooper, J. A. & Sefton, B. M. Proc. natn. Acad. Sci. U.S.A. 79, 973–977 (1982).

    Article  ADS  CAS  Google Scholar 

  18. Kalderon, D., Oostra, B. A., Ely, B. K. & Smith, A. E. Nucleic Acids Res. 10, 5161–5171 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Edge, M. D. et al. Nature 292, 756–761 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Shortle, D., DiMaio, D. & Nathans, D. A. Rev. Genet. 15, 265–294 (1981).

    Article  CAS  Google Scholar 

  21. Graham, F. L. & van der Eb, A. Virology 52, 456–458 (1973).

    Article  CAS  PubMed  Google Scholar 

  22. MacPherson, I. & Montagnier, L. Virology 23, 291–294 (1964).

    Article  CAS  PubMed  Google Scholar 

  23. Walter, G., Hutchinson, M. A., Hunter, T. & Eckhart, W. Proc. natn. Acad. Sci. U.S.A. 78, 4882–4886 (1981).

    Article  ADS  CAS  Google Scholar 

  24. Ding, D., Dilworth, S. M. & Griffin, B. E. J. Virol. 44, 1080–1083 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Dilworth, S. EMBO J. 1, 1319–1328 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Segawa, K. & Ito, Y. Proc. natn. Acad. Sci. U.S.A. 79, 6812–6816 (1982).

    Article  ADS  CAS  Google Scholar 

  27. Courtneidge, S. A. & Smith, A. E. Nature 303, 435–139 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Snyder, M. A., Bishop, J. M., Colby, W. W. & Levinson, D. A. Cell 32, 891–901 (1983).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oostra, B., Harvey, R., Ely, B. et al. Transforming activity of polyoma virus middle-T antigen probed by site-directed mutagenesis. Nature 304, 456–459 (1983). https://doi.org/10.1038/304456a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/304456a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing