Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Local regulation of compensatory noradrenergic hyperactivity in the partially denervated hippocampus

Abstract

Functional recovery after denervating lesions in the central nervous system (CNS) is particularly prominent if part of the lesioned projection is spared. Several plasticity mechanisms, such as collateral sprouting, hyperactivity of remaining axons and development of receptor supersensitivity, probably contribute to efficient recovery after subtotal lesions1–4. Although denervation-induced collateral sprouting5–8 and presynaptic compensatory hyperactivity in spared axons9–13 have been described in various systems, any possible interaction or cooperation between the two mechanisms in restoring synaptic transmission in a partially denervated target has so far not been demonstrated. We have shown previously that partial adrenergic denervation of the hippocampus in adult rats is followed by a slow and protracted reinnervation by collateral sprouting from the spared adrenergic afferents14. We now report that the partial adrenergic deafferentation is accompanied by a transient increase in turnover of the transmitter in remaining axons which subsides when the denervated region becomes reinnervated, and that the development of this compensatory hyperactivity is confined to the area of maximal denervation. The topographical specificity of the compensatory noradrenergic hyper-activity response, and the interaction between this hyperactivity and the collateral reinnervation process, strongly suggest that the changes in transmitter turnover in spared afferents after denervating lesions can be regulated by local mechanisms operating within the denervated target area.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Björklund, A. & Stenevi, U. Physiol. Rev. 59, 62–100 (1979).

    Article  Google Scholar 

  2. Stricker, E. M. & Zigmond, M. J. in Progress in Physiology and Psychology (eds Sprague, J. M. & Epstein, A. E.) 121–188. (Academic, New York, 1976).

    Google Scholar 

  3. Harik, S. I. et al. J. Neurosci. 1, 641–649 (1981).

    Article  CAS  Google Scholar 

  4. Ungersted, U. Acta physiol. scand. Suppl. 367, 69–93 (1971).

    Article  Google Scholar 

  5. Raisman, G. Brain Res. 14, 25–48 (1969).

    Article  CAS  Google Scholar 

  6. Cotman, C. W. & Lynch, G. S. in Neuronal Recognition (ed. Barondes, S.) 69–108 (Plenum, New York, 1976).

    Book  Google Scholar 

  7. Björklund, A. & Stenevi, U. Physiol. Rev. 59, 62–100 (1979).

    Article  Google Scholar 

  8. Tsukahara, N. A. Rev. Neurosci. 4, 351–379 (1981).

    Article  CAS  Google Scholar 

  9. Agid, Y., Javoy, F. & Glowinski, J. Nature 245, 150–151 (1973).

    Article  CAS  Google Scholar 

  10. Jonsson, G., Wiesel, E.-A. & Hallman, H. J. Neurobiol. 10, 4: 337–353 (1979).

    Article  CAS  Google Scholar 

  11. Acheson, A. L., Zigmond, M. J. & Stricker, E. M. Science 207, 537–540 (1980).

    Article  ADS  CAS  Google Scholar 

  12. Hefti, F., Melemed, E. & Wurtman, R. J. Brain Res. 195, 123–127 (1980).

    Article  CAS  Google Scholar 

  13. Björklund, A. & Wiklund, L. Brain Res. 191, 109–128 (1980).

    Article  Google Scholar 

  14. Gage, F. H., Björklund, A. & Stenevi, J. Brain Res. 268, 27–38 (1983).

    Article  CAS  Google Scholar 

  15. Stenevi, U. & Björklund, A. Neurosci. Lett. 7, 219–224 (1978).

    Article  CAS  Google Scholar 

  16. Loy, R. & Moore, R. Y. Expl Neurol. 59, 645–650 (1977).

    Article  Google Scholar 

  17. Carlsson, A., Davis, J. N., Kehr, W., Lindquist, M. & Atack, C. V. Naunyn-Schmiedebergs Archs Pharmak. 272, 153–168 (1972).

    Article  Google Scholar 

  18. Da Prada, M. & Zürcher, G. Life Sci. 19, 1161–1174 (1976).

    Article  CAS  Google Scholar 

  19. Zürcher, G. & Da Prada, M. J. Neurochem. 33, 631–639 (1979).

    Article  Google Scholar 

  20. Schmidt, R. H., Ingvar, M., Lindvall, O., Stenevi, U. & Björklund, A. J. Neurochem. 38, 3: 737–748 (1982).

    Article  CAS  Google Scholar 

  21. Nagai, T., Satoh, K., Imamoto, K. & Maeda, T. Neurosci. Lett. 23, 117–123 (1981).

    Article  CAS  Google Scholar 

  22. Pickel, V., Segal, M. & Bloom, F. E. J. comp. Neurol. 155, 43–60 (1974).

    Article  CAS  Google Scholar 

  23. Reis, D. J. & Ross, R. A. Brain Res. 57, 307–326 (1973).

    Article  CAS  Google Scholar 

  24. Loy, R., Koziell, D. A., Lindsay, J. D. & Moore, R. Y. J. comp. Neurol. 189, 699–710 (1980).

    Article  CAS  Google Scholar 

  25. Lidbrink, P. & Jonsson, G. J. Neurochem. 22, 617–626 (1974).

    Article  CAS  Google Scholar 

  26. Mueller, R. A., Thoenen, H. & Axelrod, J. Science 163, 468 (1969).

    Article  ADS  CAS  Google Scholar 

  27. Thoenen, H., Mueller, R. A. & Axelrod, J. Nature 221, 1264 (1969).

    Article  ADS  CAS  Google Scholar 

  28. Zigmond, R. E. & Chalazonitas, A. Brain Res. 164, 137–152 (1979).

    Article  CAS  Google Scholar 

  29. Loughlin, S. E., Foote, S. E. & Bloom, F. E. Neurosci. Abstr. 6, 352 (1980).

    Google Scholar 

  30. Kehr, W., Carlsson, A., Lindquist, M., Magnusson, T. & Atack, C. J. Pharm. Pharmac. 24, 744–747 (1972).

    Article  CAS  Google Scholar 

  31. Langer, S. Z. Br. J. Pharmac. 60, 481–497 (1977).

    Article  CAS  Google Scholar 

  32. Korf, J. in Neurotransmission and Disturbed Behavior (eds van Praag, H. M. & Bruinvels, J.) 96–102 (Bohn, Scheltema and Holkema, Utrecht, 1976).

    Google Scholar 

  33. Giorgineff, M. F., LeFoch, M. I., Glowinski, J. & Besson, M. J. J. Pharmac. exp. Ther. 200, 535–544 (1977).

    Google Scholar 

  34. Björklund, A. & Stenevi, U. Brain Res. 229, 403–428 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gage, F., Björklund, A. & Stenevi, U. Local regulation of compensatory noradrenergic hyperactivity in the partially denervated hippocampus. Nature 303, 819–821 (1983). https://doi.org/10.1038/303819a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/303819a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing