Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Thermal neutrons could be a cause of biological extinctions 65 Myr ago

Abstract

Tabulations1–4 of the number of genera present before and after the Cretaceous–Tertiary extinctions have revealed certain patterns1–6. Marine organisms were much more susceptible to extinction than were freshwater or terrestrial organisms. Benthic marine organisms were affected as much as those organisms that swam or floated. However, some marine genera were unaffected whilst some terrestrial ones were severely affected. Organisms making calcium-containing skeletons were the most sensitive. Among the hypotheses2,5–9 proposed for the extinctions is that they were caused by ionizing radiations2,8,9. The hypothesis proposed here is that the pattern of extinction in the fossil record emerged as a consequence of neutron activation of certain elements in organisms and in their environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Russell, D. A. Scient. Am. 246, 58–65 (1982).

    Article  Google Scholar 

  2. Russell, D. A. A. Rev. Earth planet. Sci. 7, 163–182 (1979).

    Article  ADS  Google Scholar 

  3. Russell, D. A. Syllogeus 12, 11–23 (1977).

    Google Scholar 

  4. Russell, D. A. & Rice, G. (eds) K-TEC II: Cretaceous–Tertiary Extinctions and Possible Terrestrial and Extraterrestrial Causes (Syllogeous Ser. No. 39, National Museums of Canada, Ottawa, 1982).

  5. Emiliani, C., Kraus, E. B. & Shoemaker, E. M. Earth planet. Sci. Lett. 55, 317–334 (1981).

    Article  ADS  Google Scholar 

  6. Hsu, K. J. Nature 285, 201–203 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Schindewolf, O. H. Z. dt. geol. Ges. 114, 430–445 (1962).

    Google Scholar 

  8. Terry, K. D. & Tucker, W. H. Science 159, 421–423 (1968).

    Article  ADS  CAS  Google Scholar 

  9. Tobias, C. A. & Todd, P. in Space Radiation Biology and Related Topics, 197–255 (Academic, New York, 1974).

    Book  Google Scholar 

  10. Ashton, F. in Cosmic Rays at Ground Level (ed. Wolfendale, A. W.) 75–83 (Institute of Physics, London, 1973).

    Google Scholar 

  11. Olsson, I. U. (ed.) Radiocarbon Variations and Absolute Chronology (Wiley, New York, 1970).

  12. Lal, D. & Peters, B. Encyclopedia of Physics Vol. XLVI/2, 551–611 (Springer, New York, 1967).

    Google Scholar 

  13. Hess, V. F. & Eugster, J. Cosmic Radiation and Its Biological Effects (Fordham University Press, New York, 1949).

    Google Scholar 

  14. Hess, W. N., Canfield, E. H. & Lingenfelter, R. E. J. geophys. Res. 66, 665–677 (1961).

    Article  ADS  Google Scholar 

  15. Osborne, J. L. & Wolfendale, A. W. (eds), Origin of Cosmic Rays (Reidel, Dordrecht, 1974).

  16. Ginzburg, V. L. & Syrovatskii, S. I. The Origin of Cosmic Rays (Pergamon, London, 1964).

    Book  Google Scholar 

  17. Wefel, J. P. in Origin of Cosmic Rays, IUA. Symp. No. 94, 39–50 (1981).

    Book  Google Scholar 

  18. Forman, M. A. & Schaeffer, O. A. Rev. Geophys. Space Phys. 17, 552–560 (1979).

    Article  ADS  Google Scholar 

  19. Wdowczyk, J. & Wolfendale, A. W. Nature 268, 510–512 (1977).

    Article  ADS  Google Scholar 

  20. Lingenfelter, R. E. & Hudson, H. S. Geochim. cosmochim. Acta Suppl. 13, 69–79 (1980).

    CAS  Google Scholar 

  21. Walker, R. M. Geochim. cosmochim. Acta Suppl. 13, 11–28 (1980).

    Google Scholar 

  22. Crozaz, G. Geochim. cosmochim. Acta Suppl. 13, 331–346 (1980).

    Google Scholar 

  23. Goswami, J. N., Lal, D. & Macdougall, J. D. Geochim. cosmochim. Acta Suppl. 13, 347–364 (1980).

    CAS  Google Scholar 

  24. Morfill, G. E. & Drury, L.O'C. Mon. Not. R. astr. Soc. 197, 369–375 (1981).

    Article  ADS  CAS  Google Scholar 

  25. Clark, D. H., McCrea, W. H. & Stephenson, F. R. Nature 265, 318–319 (1977).

    Article  ADS  Google Scholar 

  26. Yamashita, M., Stephens, L. D. & Patterson, H. W. J. geophys. Res. 71, 3817–3834 (1966).

    Article  ADS  CAS  Google Scholar 

  27. Robertson, D. E. & Carpenter, R. in Strategies for Marine Pollution Monitoring. (ed. Goldgerg, E. D.) 93–156 (Wiley, New York, 1976).

    Google Scholar 

  28. Barbier, M. Induced Radioactivity (Wiley, New York, 1969).

    Google Scholar 

  29. Riley, J. P. & Chester, R. Introduction to Marine Chemistry, 64–67 (Academic, New York, 1979).

    Google Scholar 

  30. Schopf, T. J. M. Paleoceanography, 160 (Harvard University Press, Cambridge, Massachusetts, 1980).

    Book  Google Scholar 

  31. Rains, D. W. in Plant Biochemistry (eds Bonner, J. & Varner, J. E.) 563, 3rd edn (Academic, New York, 1976).

    Google Scholar 

  32. Mauchline, J. & Templeton, W. L. Oceanogr. mar. Biol. a. Rev. 2, 229–279 (1964).

    Google Scholar 

  33. Radioactivity in the Marine Environment (National Academy of Sciences, National Research Council, 1971).

  34. Marine Radioecology: Proc. 3rd NEA Seminar (Organization for Economic Cooperation and Development, Paris, 1979).

  35. Osterberg, C., Carey, A. G. & Curl, H. Nature 200, 1276–77 (1963).

    Article  ADS  CAS  Google Scholar 

  36. Fowler, S. W. Nature 269, 51–53 (1977).

    Article  ADS  CAS  Google Scholar 

  37. Erben, H. K., Hoefs, J. & Wedepohl, K. H. Paleobiology 5, 380–414 (1979).

    Article  CAS  Google Scholar 

  38. Andrews, H. L. Radiation Biophysics (Prentice Hall, Englewood Cliffs, New Jersey, 1961).

    Google Scholar 

  39. Crenshaw, M. A. thesis, Duke Univ. (University Microfilms, Inc., Ann Arbor, Michigan, 1964).

  40. Yayanos, A. A., Gomez, L. S., Van Boxtel, R. & Dietz, A. S. 4th int. Ocean Disposal Symp., Plymouth, UK (1983).

  41. Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. Science 208, 1095–1108 (1980).

    Article  ADS  CAS  Google Scholar 

  42. Arrhenius, G., Bramlette, M. N. & Picciotto, E. Nature 180, 85–86 (1957).

    Article  ADS  CAS  Google Scholar 

  43. Orth, C. J., Gilmore, J. S., Knight, J. D., Pilmore, C. L. & Tschudy, R. H. Science 214, 1341–1343 (1981).

    Article  ADS  CAS  Google Scholar 

  44. Parthe, E. & Crocket, J. H. in Handbook of Geochemistry Vol. II–5 (ed. Wedepohl, K. H.) Sects 78-1 to 78-0 (Springer, New York, 1978).

    Google Scholar 

  45. Barker, J. L. Jr & Anders, E. Geochim. cosmochim. Acta 32, 627–645 (1968).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yayanos, A. Thermal neutrons could be a cause of biological extinctions 65 Myr ago. Nature 303, 797–800 (1983). https://doi.org/10.1038/303797a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/303797a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing