Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Development of orientation columns in cat striate cortex revealed by 2-deoxyglucose autoradiography

Abstract

In the striate cortex of adult monkeys and cats, both electro-physiology1–3 and the 2-deoxyglucose autoradiographic technique of Sokoloff4–8 suggest that neurones are arranged in functional columns or slabs that run through the full thickness of the cortex, each column containing cells with a preference for a particular orientation of line or edge in the visual field. There is disagreement, however, concerning the organization of visual cortex in very young animals and the role of visual experience in cortical development. Orientation-selective neurones clearly exist in immature cat cortex, but reports differ on their frequency, angular selectivity and degree of columnar organization (see ref. 9 for review). We have used 2-deoxyglucose autoradiography to investigate the development of cat striate cortex. This technique reveals the spatial distribution of activity in populations of neurones and should therefore provide information about how the columnar pattern develops and whether its maturation depends on visual stimulation. We report here that in normal animals, periodic metabolic labelling around layer IV was first clearly observed at 21 days of age and by 35 days the pattern had become truly columnar; in a matched series of animals deprived of normal pattern vision no differential label was observed except for weak periodicity in a single 35-day-old animal. These results suggest that cat striate cortex is immature at the time of eye-opening and that visual experience is crucial for normal maturation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hubel, D. H. & Wiesel, T. N. J. Physiol., Lond. 160, 106–154 (1962).

    Article  CAS  Google Scholar 

  2. Hubel, D. H. & Wiesel, T. N. J. Physiol., Lond. 195, 215–243 (1968).

    Article  CAS  Google Scholar 

  3. Hubel, D. H. & Wiesel, T. N. J. comp. Neurol. 158, 267–293 (1974).

    Article  CAS  Google Scholar 

  4. Sokoloff, L. et al. J. Neurochem. 28, 897–916 (1977).

    Article  CAS  Google Scholar 

  5. Hubel, D. H., Wiesel, T. N. & Stryker, M. P. J. comp. Neurol. 177, 361–380 (1978).

    Article  CAS  Google Scholar 

  6. Albus, K. Expl Brain Res. 37, 609–613 (1979).

    Article  CAS  Google Scholar 

  7. Schoppmann, A. & Stryker, M. P. Nature 293, 574–576 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Singer, W. Expl Brain Res. 44, 431–436 (1981).

    Article  CAS  Google Scholar 

  9. Movshon, J. A. & Van Sluyters, R. C. A. Rev. Psychol. 32, 477–522 (1981).

    Article  CAS  Google Scholar 

  10. Blakemore, C. & Van Sluyters, R. C. J. Physiol., Lond. 248, 663–716 (1975).

    Article  CAS  Google Scholar 

  11. McLean, I. W. & Nakane, P. K. J. Histochem. Cytochem. 22, 1077–1083 (1974).

    Article  CAS  Google Scholar 

  12. Durham, D., Woolsey, T. A. & Kruger, L. J. Neurosci. 1, 519–526 (1981).

    Article  CAS  Google Scholar 

  13. Singer, W., Freeman, B. & Rauschecker, J. Expl Brain Res. 41, 199–215 (1981).

    CAS  Google Scholar 

  14. Livingstone, M. S. & Hubel, D. H. Nature 291, 554–561 (1981).

    Article  ADS  CAS  Google Scholar 

  15. Stryker, M. P., Hubel, D. H. & Wiesel, T. N. Soc. Neurosci. Abstr. 3, 1852 (1977).

    Google Scholar 

  16. Hubel, D. H. & Wiesel, T. N. J. Neurophysiol. 26, 994–1002 (1963).

    Article  CAS  Google Scholar 

  17. Fregnac, Y. & Imbert, M. J. Physiol., Lond. 278, 27–44 (1978).

    Article  CAS  Google Scholar 

  18. Bonds, A. B. in Developmental Neurobiology of Vision (ed. Freeman, R. D.) 31–49 (Plenum, New York, 1979).

    Book  Google Scholar 

  19. Beckmann, R. & Albus, K. Expl Brain Res. 47, 49–56 (1982).

    Article  CAS  Google Scholar 

  20. Sherk, H. & Stryker, M. P. J. Neurophysiol. 39, 63–70 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, I., Kossut, M. & Blakemore, C. Development of orientation columns in cat striate cortex revealed by 2-deoxyglucose autoradiography. Nature 301, 712–715 (1983). https://doi.org/10.1038/301712a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/301712a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing