Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Possible role of acetylcholinesterase in regulation of postsynaptic receptor efficacy at a central inhibitory synapse of Aplysia

Abstract

Most of the effects of acetylcholinesterase (AChE) on synaptic transmission are considered to be related to its acetylcholine (ACh) hydrolysing properties. This is clearly apparent from changes which occur in the characteristics of the miniature endplate potential and of the endplate potential at neuromuscular Junctions when AChE is inhibited1–4 and during the development of enzymatic AChE activity at maturing synapses5. However, we report here that after inhibiting AChE in a cholinergic synapse in Aplysia, we found an increase not only in postsynaptic responses to presynaptic stimulation and to ionophoretic application of ACh on postsynaptic receptors, but also to ionophoretic application of carbachol. This could not be explained by the inhibition of the ACh hydrolysing function of the enzyme, as carbachol is not hydrolysed by AChE. A possible explanation of these observations is that inhibition of the enzyme affects a property of the ACh receptor (AChR) itself.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Katz, B. & Miledi, R. J. Physiol., Lond. 231, 549–574 (1973).

    Article  CAS  Google Scholar 

  2. Kuba, K., Albuquerque, E. X., Daly, J. & Barnard, E. A. J. Pharmac. exp. Ther. 189, 499–512 (1974).

    CAS  Google Scholar 

  3. Kordas, M., Brzin, M. & Majcen, Z. Neuropharmacology 14, 791–800 (1975).

    Article  CAS  Google Scholar 

  4. Skliarov, A. I. Gen. Pharmac. 11, 89–95 (1980).

    Article  CAS  Google Scholar 

  5. Kullberg, R. W., Mikelberg, F. S. & Cohen, M. W. Devl Biol. 75, 255–267 (1980).

    Article  CAS  Google Scholar 

  6. Tauc, L. & Gerschenfeld, H. M. J. Neurophysiol. 25, 236–262 (1962).

    Article  CAS  Google Scholar 

  7. Gardner, D. Science 173, 550–553 (1971).

    Article  ADS  CAS  Google Scholar 

  8. Tauc, L., Hoffmann, A., Tsuji, S., Hinzen, D. H. & Faille, L. Nature 250, 496–498 (1974).

    Article  ADS  CAS  Google Scholar 

  9. Fiore, L. & Meunier, J. M. Brain Res. 92, 336–340 (1975).

    Article  CAS  Google Scholar 

  10. Gardner, D. & Kandel, E. R. J. Neurophysiol. 40, 333–348 (1977).

    Article  CAS  Google Scholar 

  11. Simonneau, M., Tauc, L. & Baux, G. Proc. natn. Acad. Sci. U.S.A. 77, 1661–1665 (1980).

    Article  ADS  CAS  Google Scholar 

  12. Simonneau, M., Baux, G. & Tauc, L. INSERM Symp. 13, 179–189 (1980).

    CAS  Google Scholar 

  13. Katz, B. & Miledi, R. J. Physiol., Lond. 224, 665–699 (1972).

    Article  CAS  Google Scholar 

  14. Gardner, D. & Stevens, C. F. J. Physiol., Lond. 304, 145–164 (1980).

    Article  CAS  Google Scholar 

  15. Fossier, P., Tauc, L. & Baux, G. Pflügers Arch. ges. Physiol. 396, 8–14 (1983).

    Article  CAS  Google Scholar 

  16. Fossier, P., Baux, G. & Tauc, L. Pflügers Arch. ges. Physiol. 396, 15–22 (1983).

    Article  CAS  Google Scholar 

  17. Dettbarn, W. D. & Rosenberg, P. Biochim. biophys. Acta 65, 362–363 (1962).

    Article  CAS  Google Scholar 

  18. Ascher, P. & Erulkar, S. D. Soc. Neurosci. Abstr. 8, 524 (1982).

    Google Scholar 

  19. Emmelin, N. & Macintosh, F. C. J. Physiol., Lond. 131, 477–496 (1956).

    Article  CAS  Google Scholar 

  20. Gerschenfeld, H. M., Ascher, P. & Tauc, L. Nature 213, 358–359 (1967).

    Article  ADS  CAS  Google Scholar 

  21. Stinnakre, J. J. Physiol., Paris 62, 452–453 (1970).

    CAS  Google Scholar 

  22. Giller, E. Jr & Schwarte, J. H. J. Neurophysiol. 34, 108–115 (1971).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fossier, P., Baux, G. & Tauc, L. Possible role of acetylcholinesterase in regulation of postsynaptic receptor efficacy at a central inhibitory synapse of Aplysia. Nature 301, 710–712 (1983). https://doi.org/10.1038/301710a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/301710a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing