Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electrical conductivity in phthalocyanines modulated by circularly polarized light

Abstract

The phthalocyanines, both metal-free and metal-substituted (Fig. 1), are well known as gas absorbers and useful as ambient vapour sensors1–5. The increase in conductivity which occurs on irradiating phthalocyanine films with light (the photovoltaic effect) is a relatively slow diffusion-controlled process6–9. We report here the modulation of electrical conductance by circularly, as opposed to linearly, polarized light of phthalocyanine films sublimed onto an interdigital electrode surface [metal-semiconductor-metal (MSM) structure]. The influence of an adsorbed electron acceptor, the oxygen molecule, in creating the p-type semiconductor has been investigated. The underlying mechanism of the conductance change involves change of the Fermi level of the phthalocyanine electrode system by circularly polarized light acting as an effective magnetic field in an inverse Faraday effect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lever, A. B. P. Adv. inorg. Radiochem. 7, 27–105 (1965).

    Article  CAS  Google Scholar 

  2. Eley, D. D. Research (Lond.) 12, 293–299 (1960).

    Google Scholar 

  3. Sadaoka, Y., Yamazoe, N. & Seiyama, T. Denki Kagaku Oyobi Kogyo Butswi Kagak 46, 597–602 (1978).

    CAS  Google Scholar 

  4. Robinson, G. A., Kember, P. N. & Burns, D. K. UK Patent Appl. GB 2,077, 437 (1981).

  5. Gutman, G. F. & Lyons, D. E. Organic Semiconductors (Wiley, New York, 1967).

    Google Scholar 

  6. Tollin, G., Kearns, D. R. & Calvin, M. J. chem. Phys. 32, 1013–1019 (1960).

    Article  ADS  CAS  Google Scholar 

  7. Kearns, D. R., Tollin, G. & Calvin, M. J. chem. Phys. 32, 1020–1025 (1960).

    Article  ADS  CAS  Google Scholar 

  8. Kearns, D. R. & Calvin, M. J. Am. chem. Soc. 83, 2110–2121 (1961).

    Article  CAS  Google Scholar 

  9. Kearns, D. R. & Calvin, M. J. chem. Phys. 34, 2022–2025 (1961).

    Article  ADS  CAS  Google Scholar 

  10. Hollebone, B. R. & Stillman, M. J. chem. Phys. Lett. 29, 284–286 (1974).

    Article  ADS  CAS  Google Scholar 

  11. Stillman, M. J. & Thompson, A. J. JCS Faraday Trans. II 70, 790–804 (1974).

    Article  CAS  Google Scholar 

  12. Stillman, M. J. & Thompson, A. J. JCS Faraday Trans. II 70, 805–814 (1974).

    Article  CAS  Google Scholar 

  13. Hollebone, B. R. & Stillman, A. J. JCS Faraday Trans. II 74, 2107–2127 (1978).

    Article  CAS  Google Scholar 

  14. Martin, K. A. & Stillman, A. J. Can. J. Chem. Commun. 57, 1111–1113 (1979).

    Article  CAS  Google Scholar 

  15. Langford, C. H., Hollebone, B. R. & Vandernoot, T. Adv. Chem. Ser. 184, 139–154 (1980).

    Article  CAS  Google Scholar 

  16. Mycielski, W., Ziolkowska, B. & Lippinski, A. Thin Solid Films 91, 335–338 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Fan, F-R. & Faulkner, L. R. J. chem. Phys. 69, 3334–3340 (1978).

    Article  ADS  CAS  Google Scholar 

  18. Fan, F-R. & Faulkner, L. R. J. chem. Phys. 69, 3341–3349 (1978).

    Article  ADS  CAS  Google Scholar 

  19. Fan, F-R. & Faulkner, L. R. J. Am. chem. Soc. 101, 4779–4787 (1979).

    Article  CAS  Google Scholar 

  20. Tachikawa, H. & Faulkner, L. R. J. Am. chem. Soc. 100, 4379–4385 (1978).

    Article  CAS  Google Scholar 

  21. Jaeger, C. D., Fan, F-R. & Bard, A. J. J. Am. chem. Soc. 102, 2592–2598 (1980).

    Article  CAS  Google Scholar 

  22. Pershan, P. S., Van der Ziel, J. P. & Malmstrom, L. D. Phys. Rev. 143, 574–583 (1966).

    Article  ADS  CAS  Google Scholar 

  23. Pershan, P. S., Van der Ziel, J. P. & Malmstrom, L. D. Phys. Rev. Lett. 15, 190–193 (1965).

    Article  ADS  Google Scholar 

  24. Atkins, P. W. & Miller, M. H. Molec. Phys. 15, 503–550 (1968).

    Article  ADS  CAS  Google Scholar 

  25. Barrett, T. W. Chem. phys. Lett. 78, 125–128 (1981).

    Article  ADS  CAS  Google Scholar 

  26. Barrett, T. W. in Proc. Molecular Electronic Device Workshop, 274–290 (Naval Research Laboratory Memorandum Rep. 4662, 1981).

    Google Scholar 

  27. Barrett, T. W. JCS Chem. Commun. 9, 789 (1982).

    ADS  Google Scholar 

  28. Barrett, T. W. Phys. Lett. 914, 139–142 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrett, T., Wohltjen, H. & Snow, A. Electrical conductivity in phthalocyanines modulated by circularly polarized light. Nature 301, 694–695 (1983). https://doi.org/10.1038/301694a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/301694a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing