Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rearrangement of mammalian chromatin structure following excision repair

Abstract

Repair of DNA damage in eukaryotic cells involves local disruption of chromatin structure such that repair-incorporated nucleotides are transiently highly sensitive to digestion by staphylococcal nuclease (SN)1–4. We have examined the dependence of this phenomenon on the initial distribution in chromatin of DNA damage by comparing the repair of pyrimidine dimers, which are distributed randomly in chromatin5, with the repair of angelicin photoadducts, which are formed primarily in linker regions of nucleosomes6,7. We find that the transient nuclease sensitivity of repair patches is independent of the initial distribution of DNA damage in chromatin. In addition, our observation that repair patches produced in response to a linker-specific damaging agent become distributed randomly in chromatin implies that nucleosome cores do not necessarily return to their original sites along a DNA strand after the DNA is repaired.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Smerdon, M. J. & Lieberman, M. W. Proc. natn. Acad. Sci. U.S.A. 75, 4238–4241 (1978).

    Article  ADS  CAS  Google Scholar 

  2. Bodell, W. J. & Cleaver, J. E. Nucleic Acids Res. 9, 203–212 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Oleson, F. B., Mitchell, B. L., Dipple, A. & Lieberman, M. W. Nucleic Acids Res. 7, 1343–1361 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lieberman, M. W., Smerdon, M. J., Tlsty, T. D. & Oleson, F. B. in Environmental Carcinogenesis (eds Emmelot, P. & Kriek, E.) 345–363 (Elsevier, Amsterdam, 1979).

    Google Scholar 

  5. Williams, J. I. & Friedberg, E. C. Biochemistry 18, 3965–3972 (1979).

    Article  CAS  PubMed  Google Scholar 

  6. Wiesenhahn, G. P., Hyde, J. E. & Hearst, J. E. Biochemistry 16, 925–932 (1979).

    Article  Google Scholar 

  7. Cech, T. & Pardue, M. L. Cell 11, 631–640 (1977).

    Article  CAS  PubMed  Google Scholar 

  8. Dall'Acqua, F., Marciani, S., Ciavatta, L. & Rodighiero, G. Z. Naturf. 26 b, 561–569 (1971).

    Article  CAS  Google Scholar 

  9. Kaye, J., Smith, C. A. & Hanawalt, P. C. Cancer Res. 40, 696–702 (1980).

    CAS  PubMed  Google Scholar 

  10. Niggli, H. J. & Cerutti, P. A. Biochem. biophys. Res. Commun. 105, 1215–1223 (1982).

    Article  CAS  PubMed  Google Scholar 

  11. Stein, G. H. J. cell. Physiol. 99, 43–54 (1979).

    Article  CAS  PubMed  Google Scholar 

  12. Zolan, M. E., Cortopassi, G. A., Smith, C. A. & Hanawalt, P. C. Cell 28, 613–619 (1982).

    Article  CAS  PubMed  Google Scholar 

  13. Smerdon, M. J., Tlsty, T. D. & Lieberman, M. W. Biochemistry 17, 2377–2386 (1978).

    Article  CAS  PubMed  Google Scholar 

  14. Kornberg, R. D. A. Rev. Biochem. 46, 931–954 (1977).

    Article  CAS  Google Scholar 

  15. Baer, B. W. & Kornberg, R. D. J. biol. Chem. 254, 9678–9681 (1979).

    CAS  PubMed  Google Scholar 

  16. Prunnel, A. in Chromatin Structure and Function (ed. Nicolini, C.) 441–449 (Plenum, New York, 1979).

    Book  Google Scholar 

  17. Nelson, P. P., Albright, S. C. & Garrad, W. T. J. biol. Chem. 254, 9194–9199 (1979).

    CAS  PubMed  Google Scholar 

  18. Louis, C., Schedl, P., Samal, B. & Worcel, A. Cell 22, 387–392 (1980).

    Article  CAS  PubMed  Google Scholar 

  19. Wittig, B. & Wittig, S. Cell 18, 1173–1183 (1979).

    Article  CAS  PubMed  Google Scholar 

  20. Gottesfeld, J. M. & Bloomer, L. S. Cell 21, 751–760 (1980).

    Article  CAS  PubMed  Google Scholar 

  21. Igo-Kemenes, T., Omori, A. & Zachau, H. G. Nucleic Acids Res. 8, 5377–5390 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cook, K. H. & Friedberg, E. C. Analyt. Biochem. 73, 411–418 (1976).

    Article  CAS  PubMed  Google Scholar 

  23. Smith, C. A., Cooper, P. K. & Hanawalt, P. C. in DNA Repair: A Laboratory Manual of Research Procedures Vol. 1 (eds Friedberg, E. C. & Hanawalt, P. C.) 289–305 (Dekker, New York, 1981).

    Google Scholar 

  24. Axel, R. Biochemistry 14, 2921–2925 (1975).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zolan, M., Smith, C., Calvin, N. et al. Rearrangement of mammalian chromatin structure following excision repair. Nature 299, 462–464 (1982). https://doi.org/10.1038/299462a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/299462a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing