Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for contractile flexing of the gliding bacterium Flexibacter FS-1

Abstract

Flexing movements have been described in a variety of gliding bacteria and cyanobacteria (blue-green algae)1–7. Flexing of trichomes (chains of cells) of the genera Oscillatoria and Beggiatoa was attributed8 to a “certain degree of elasticity”; it was concluded that there is no spontaneous flexibility. In contrast, observations of active flexing of free ends of otherwise immobilized Oscillatoria trichomes suggested9 that active contractions are involved. It has been proposed that flexing and gliding motility are powered by the same mechanism10. No organelles have been demonstrated irrefutably to be responsible for these movements, although several mechanistic hypotheses have been proposed11. I demonstrate here that flexing movements by the bacterium Flexibacter FS-1 require no more than one point of attachment by the cell to its substratum, which suggests that flexing may result from a unilateral, longitudinal contraction. As the same motility mechanism is thought to operate for both flexing and gliding, the latter may be powered by a contractile apparatus, at least in this species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Correns, C. Ber. dt. bot. Ges. 15, 139–148 (1897).

    Google Scholar 

  2. Kolkwitz, R. Ber. dt. bot. Ges. 15, 460–467 (1897).

    Google Scholar 

  3. Stapp, C. & Bortels, H. Zentbl. Bakt. ParasitKde 90, (11) 28–66 (1934).

    CAS  Google Scholar 

  4. Stanier, R. Y. J. Bact. 40, 619–635 (1940).

    CAS  PubMed  Google Scholar 

  5. Garnjobst, I. J. Bact. 49, 113–128 (1945).

    CAS  PubMed  Google Scholar 

  6. Simon, G. D. & White, D. Arch. Mikrobiol. 78, 1–16 (1971).

    Article  CAS  Google Scholar 

  7. Reichenbach, H., Kleinig, K. & Achenbach, H. Arch. Mikrobiol. 101, 131–144 (1974).

    Article  CAS  Google Scholar 

  8. Pringsheim, E. G. Bact. Rev. 13, 47–98 (1949).

    CAS  PubMed  Google Scholar 

  9. Castenholz, R. W. Nature 215, 1285–1286 (1967).

    Article  ADS  Google Scholar 

  10. Dayrell-Hart, B. & Burchard, R. P. J. Bact. 137, 1417–1420 (1979).

    CAS  PubMed  Google Scholar 

  11. Burchard, R. P. A. Rev. Microbiol. 35, 497–529 (1981).

    Article  CAS  Google Scholar 

  12. Drews, G. & Nultsch, W. in Encyclopedia of Plant Physiology Vol. 17, Pt 2 (ed. Ruhland, W.) 876–919 (Springer, Berlin, 1962).

    Google Scholar 

  13. Walsby, A. E. Protoplasma 65, 223–238 (1968).

    Article  Google Scholar 

  14. Poos, J. C. et al. J. Bact. 112, 1387–1395 (1972).

    CAS  PubMed  Google Scholar 

  15. Burkholder, P. R. Q. Rev. Biol. 9, 438–459 (1934).

    Article  Google Scholar 

  16. Pate, J. L. & Chang, L.-Y. E. Curr. Microbiol. 2, 59–64 (1979).

    Article  Google Scholar 

  17. Silverman, M. & Simon, M. I. A. Rev. Microbiol. 31, 397–419 (1977).

    Article  CAS  Google Scholar 

  18. Doetsch, R. N. & Sjoblad, R. D. A. Rev. Microbiol. 34, 69–108 (1980).

    Article  CAS  Google Scholar 

  19. Humphrey, B. A., Dickson, M. R. & Marshall, K. C. Arch. Microbiol. 120, 231–238 (1979).

    Article  CAS  Google Scholar 

  20. Coupin, H. C. r. hebd. Séanc. Acad. Sci., Paris 176, 1491–1493 (1923).

    Google Scholar 

  21. Dworkin, M., Keller, K. H., Grady, M. & Weisberg, D. 8th int. Conf. Biology of the Myxobacteria, Bloomington, Indiana (1981).

    Google Scholar 

  22. Schulz, G. Arch. Mikrobiol. 21, 335–370 (1955).

    Article  CAS  Google Scholar 

  23. Mitchell, P. Proc. R. phys. Soc. Edinb. 25, 32–34 (1956).

    Google Scholar 

  24. Bredt, W., Heunert, H. H., Hofling, K. H. & Milthaler, B. J. Bact. 113, 1223–1227 (1973).

    CAS  PubMed  Google Scholar 

  25. Burchard, A. C., Burchard, R. P. & Kloetzel, J. A. J. Bact. 132, 666–672 (1977).

    CAS  PubMed  Google Scholar 

  26. Halfen, L. N. & Castenholz, R. W. J. Phycol. 7, 133–145 (1971).

    Article  Google Scholar 

  27. Hughes, B. L. & Burchard, R. P. J. theor. Biol. (submitted).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burchard, R. Evidence for contractile flexing of the gliding bacterium Flexibacter FS-1. Nature 298, 663–665 (1982). https://doi.org/10.1038/298663a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/298663a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing