Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Inverted repeats surround the ribitol–arabitol genes of E. coli C

Abstract

Only 10–20% of natural Escherichia coli strains can catabolize the pentitol sugars ribitol and D-arabitol1. This variability extends to common laboratory strains: E. coli C strains, but neither K12 nor B strains, can catabolize these sugars. In E. coli C, the genes responsible for these catabolic pathways are chromosomal and consist of two very closely linked, independent operons2. Genetic1 and hybridization studies (C.D.L. and A.M.R., unpublished data) indicate that the genes are completely absent in K12. These observations led us to consider whether these genes had been acquired by horizontal, rather than vertical, genetic transmission, perhaps as an inserted transposable element. Here we report that the ribitol-arabitol genes of E. coli C are surrounded by 1.4 kilobase (kb) inverted repeats of imperfect homology. These genes may constitute an example of a vestigial transposable element recently acquired by the bacterial chromosome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Reiner, A. M. J. Bact. 123, 530–536 (1975).

    CAS  PubMed  Google Scholar 

  2. Scangos, G. A. & Reiner, A. M. J. Bact. 134, 492–500 (1978).

    CAS  PubMed  Google Scholar 

  3. Kleckner, N. Cell 11, 11–23 (1977).

    Article  CAS  Google Scholar 

  4. Calos, M. P. & Miller, J. Cell 20, 579–595 (1980).

    Article  CAS  Google Scholar 

  5. Davis, R. W., Botstein, D. & Roth, J. R. in Advanced Bacterial Genetics, 114–115 (Cold Spring Harbor Laboratory, New York, 1980).

    Google Scholar 

  6. Ohtsubo, H. & Ohtsubo, E. Proc. natn. Acad. Sci. U.S.A. 73, 2316–2320 (1976).

    Article  ADS  CAS  Google Scholar 

  7. Tye, B.-K., Chan. R. K. & Botstein, D. J. molec. Biol. 85, 485–500 (1974).

    Article  CAS  Google Scholar 

  8. Rigby, P. W. J., Dieckman, M., Rhodes, C. & Berg, P. J. molec. Biol. 113, 237–251 (1977).

    Article  CAS  Google Scholar 

  9. Hyman, R. W., Brunowski, I. & Summers, W. L. J. molec. Biol. 77, 89–96 (1973).

    Article  Google Scholar 

  10. Shaw, K. J. & Berg, C. M. Genetics 92, 741–747 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Neuberger, M. S. & Hartley, B. S. J. molec. Biol. 132, 435–470 (1979).

    Article  CAS  Google Scholar 

  12. Inderlied, C. B. & Mortlock, R. P. J. molec. Evol. 9, 181–190 (1977).

    Article  ADS  CAS  Google Scholar 

  13. Cambell, A. A. Rev. Microbiol. 35, 55–83 (1981).

    Article  Google Scholar 

  14. Bobrowski, M. M. et al. J. Bact. 125, 149–157 (1976).

    CAS  PubMed  Google Scholar 

  15. Arber, W. & Linn, S. A. Rev. Biochem. 38, 467–500 (1969).

    Article  CAS  Google Scholar 

  16. Deonier, R. C. & Hadley, R. G. Nature 264, 191–193 (1976).

    Article  ADS  CAS  Google Scholar 

  17. Chow, L. T. in DNA Insertion Elements, Plasmids and Episomes (eds Bukhari, A. I., Shapiro, J. A. & Adhya, S. C.) 73–79, (Cold Spring Harbor Laboratory, New York, 1977).

    Google Scholar 

  18. Kleckner, N., Barker, D. F., Ross, D. G. & Botstein, D. Genetics 90, 427–450 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  20. Botchan, M., Topp, W. & Sambrook, J. Cell 9, 269–287 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Link, C., Reiner, A. Inverted repeats surround the ribitol–arabitol genes of E. coli C. Nature 298, 94–96 (1982). https://doi.org/10.1038/298094a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/298094a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing