Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Differences between oestrogen receptor activation by oestrogen and antioestrogen

Abstract

Triphenylethylene antioestrogens such as tamoxifen, nafoxidine and Ci 628 specifically inhibit oestrogen action at the target cell level1, probably by interacting with the oestrogen receptor (ER) and competitively displacing oestrogens from their binding sites. It is not clear, however, why these ligands are less biologically active than oestrogens when they bind to the ER, as no reliable difference has been found either in the binding affinity of these two series of ligands to the ER or in their ability to translocate the ER to the nucleus1,2. In fact, these antioestrogens are transformed in vivo into hydroxylated metabolites3–5 which display a better antioestrogenic activity than the injected compound and at least the same high affinity as oestradiol for the ER6. With the aim of finding an in vitro criterion to predict the agonistic or antagonistic properties of ER ligands, we have stabilized the ER in its ‘native’ or non-activated form by the use of molybdate7,8 and have compared the binding of oestradiol (E2) and of 4-hydroxytamoxifen (OHT), an active metabolite of tamoxifen, to the molybdate-treated and to the activated ER. We report here that molybdate prevented the DNA binding and the 4S to 5S transformation of the ER bound to both ligands, and that it increased the dissociation rate of oestrogens but not that of antioestrogens. Moreover, in the absence of molybdate, receptor activation by heating decreased the dissociation rate of E2 but not that of OHT. We conclude that a difference exists between the ER activation triggered by oestrogens and antioestrogens and propose that antioestrogens are acting as allosteric ligands of the ER.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Clark, J. H. et al. (eds) Dahlem Konf., Life Sci. Res. Rep. 3, 147–169 (1976).

  2. Rochefort, H., Garcia, M. & Borgna, J. L. Biochem. biophys. Res. Commun. 88, 351–357 (1979).

    Article  CAS  Google Scholar 

  3. Katzenellenbogen, B. S., Katzenellenbogen, J. A., Ferguson, E. R. & Krauthammer, N. J. biol Chem. 253, 697–707 (1978).

    CAS  PubMed  Google Scholar 

  4. Borgna, J. L. & Rochefort, H. J. biol. Chem. 256, 859–868 (1981).

    CAS  PubMed  Google Scholar 

  5. Jordan, V. C., Collins, M. M., Rowsby, L. & Prestwich, G. J. Endocrinology 75, 305–357 (1979).

    Article  Google Scholar 

  6. Borgna, J. L. & Rochefort, H. Molec. cell. Endocr. 20, 71–86 (1980).

    Article  CAS  Google Scholar 

  7. Mauck, L. A. & Notides, A. C. 62nd A. Meet. Endocr. Soc., Abstr. 209 (1980).

  8. Shyamala, G. & Leonard, L. J. biol. Chem. 255, 6028–6031 (1980).

    CAS  PubMed  Google Scholar 

  9. Baskevitch, P. P. & Rochefort, H. Molec. cell. Endocr. 22, 195–210 (1981).

    Article  CAS  Google Scholar 

  10. Notides, A. C. & Nielsen, S. J. J. biol. Chem. 249, 1866–1873 (1974).

    CAS  PubMed  Google Scholar 

  11. Raynaud, J. P., Bouton, M. M. & Ojasoo, T. Trends pharmac, Sci. 324–327 (1980).

  12. Weichman, B. M. & Notides, A. C. Endocrinology 106, 434–439 (1980).

    Article  CAS  Google Scholar 

  13. Black, L. J. & Goode, R. L. Life Sci. 26, 1453–1458 (1980).

    Article  CAS  Google Scholar 

  14. Garcia, M. & Rochefort, H. Endocrinology 104, 1797–1804 (1979).

    Article  CAS  Google Scholar 

  15. Rochefort, H. & Capony, F. Biochem. biophys. Res. Commun. 75, 277–285 (1977).

    Article  CAS  Google Scholar 

  16. Aranyi, P. Biochim. biophys. Acta 628, 220–227 (1980).

    Article  CAS  Google Scholar 

  17. Sutherland, R. L., Murphy, L. C., San Foo, M., Green, M. D. & Whybourne, A. M. Nature 288, 273 (1980).

    Article  ADS  CAS  Google Scholar 

  18. Westley, B. R. & Rochefort, H. Cell 20, 353–362 (1980).

    Article  CAS  Google Scholar 

  19. Rochefort, H., Borgna, J. L., Coezy, E., Vignon, F. & Westley, B. in Non-Steroidal Antiestrogens (eds Sutherland, R. L. & Jordan, V. C.) (Academic, Sydney, 1980).

    Google Scholar 

  20. Lippman, M., Bolan, G. & Huff, K. Cancer Res. 36, 4595–4601 (1976).

    CAS  PubMed  Google Scholar 

  21. Capony, F. & Williams, D. L. Endocrinology 19, 2219–2226 (1980).

    CAS  Google Scholar 

  22. Bullock, L. P., Bardin, C. Q. & Sherman, M. Endocrinology 103, 1768–1782 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rochefort, H., Borgna, JL. Differences between oestrogen receptor activation by oestrogen and antioestrogen. Nature 292, 257–259 (1981). https://doi.org/10.1038/292257a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/292257a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing