Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Epoxide hydrolase activity in the mitochondrial fraction of mouse liver

Abstract

The intense interest in the metabolic fate of epoxidized xeno-biotics is due to several factors. For instance, epoxides are often intermediates in the lipophile to hydrophile conversions necessary for the excretion of olefinic and aromatic compounds by living systems1, and are widely encountered in man's diet from both natural and man–made sources. Some of these epoxidized compounds may alkylate proteins and nucleic acids and thus include some of the most potent cytotoxins, mutagens and carcinogens known2. In mammals, epoxides may rearrange, deoxygenate to olefins, react with glutathione to form conjugates, or be hydrolysed by water to yield 1,2–diols with or without enzymatic catalysis1,3,4,. The enzymes which catalyse the formation of diols are known as epoxide hydrolases (EC 3.3.2.3), and their subcellular distribution is the subject of this report. Early data showed that styrene oxide hydrolase activity was associated with the microsomal subcellular fraction5. Epoxide hydrolase activity was subsequently demonstrated on the nuclear6, Golgi apparatus and plasma membranes7, and in the cytosol of the cell8,9, leaving the mitochondria as the last major cellular organelle assumed to be devoid of epoxide hydrolase activity. We now report strong evidence for the occurrence of substantial epoxide hydrolase activity in the mitochondria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Oesch, F. Xenobiotica 3, 305–340 (1973).

    Article  CAS  PubMed  Google Scholar 

  2. Miller, J. A. & Miller, E. C. in Chemical Carcinogenesis Pt A (eds Ts'o, P. O. P. & DiPaolo, V. A.) 61–85 (Dekker, New York, 1974).

    Google Scholar 

  3. Ivie, G. W. Science 191, 959–961 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Jakoby, W. B. Adv. Enzym. 46, 383–414 (1978).

    CAS  Google Scholar 

  5. Oesch, F., Jerina, D. M. & Daly, J. Biochim. biophys. Acta 227, 685–691 (1971).

    Article  CAS  PubMed  Google Scholar 

  6. Mukhtar, H., Elmamlouk, T. H. & Bend, J. R. Archs Biochem. Biophys. 192, 10–21 (1979).

    Article  CAS  Google Scholar 

  7. Stasiecki, P., Oesch, F., Bruder, G., Jarasch, E.-D. & Franke, W. W. Eur. J. Cell Biol. 21, 79–92 (1980).

    CAS  PubMed  Google Scholar 

  8. Gill, S. S., Hammock, B. D. & Casida, J. E. J. agric. Fd Chem. 22, 386–395 (1974).

    Article  CAS  Google Scholar 

  9. Hammock, B. D., Gill, S. S., Stamoudis, V. & Gilbert, L. I. Comp. Biochem. Physiol. 53 B, 263–265 (1976).

    Article  CAS  Google Scholar 

  10. Gill, S. S. & Hammock, B. D. Biochem. Pharmac. 29, 389–395 (1980).

    Article  CAS  Google Scholar 

  11. Gill, S. S. & Hammock, B. D. Biochem. biophys. Res. Commun. 89, 965–971 (1979).

    Article  CAS  PubMed  Google Scholar 

  12. Jerina, D. M., Dansette, P. M., Lu, A. Y. H. & Levin, W. Molec. Pharmac. 13, 342–351 (1977).

    CAS  Google Scholar 

  13. Mullin, C. A. & Hammock, B. D. Analyt. Biochem. 106, 476–485 (1980).

    Article  CAS  PubMed  Google Scholar 

  14. Oesch, F. & Bentley, P. Nature 259, 53–55 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Leighton, F. et al. J. Cell Biol. 37, 482–513 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sottocassa, G. L., Kuylenstierna, B., Ernster, L. & Bergstrand, A. J. Cell Biol. 32, 415–438 (1967).

    Article  Google Scholar 

  17. Omura, T. & Sato, R. J. biol. Chem. 239, 2370–2378 (1964).

    CAS  PubMed  Google Scholar 

  18. Shepherd, D. & Garland, P. B. Meth. Enzym. 13, 11–16 (1969).

    Article  CAS  Google Scholar 

  19. Bergmeyer, H. U. Methods of Enzymatic Analysis Vols 1, 2 (Academic, New York, 1974).

    Google Scholar 

  20. Kalckar, H. M. J. biol. Chem. 167, 461–475 (1947).

    CAS  PubMed  Google Scholar 

  21. Ames, B. N., McCann, J. & Yamasaki, E. Mutat. Res. 31, 347–364 (1975).

    Article  CAS  PubMed  Google Scholar 

  22. Hammock, B. D., Gill, S. S., Mumby, S. M. & Ota, K. in Molecular Basis of Environmental Toxicity (ed. Bhatnagar, R. S.) 229–272 (Ann Arbor Science, Michigan, 1980).

    Google Scholar 

  23. Allen, J. A. & Coombs, M. M. Nature 287, 244–245 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Backer, J. M. & Weinstein, I. B. Science 209, 297–299 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Sato, R., Atsuta, Y., Imai, Y., Taniguchi, S. & Okuda, R. Proc. natn. Acad. Sci. U.S.A. 74, 5477–5481 (1977).

    Article  ADS  CAS  Google Scholar 

  26. Raw, I. Biochem. biophys. Res. Commun. 81, 1294–1297 (1978).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gill, S., Hammock, B. Epoxide hydrolase activity in the mitochondrial fraction of mouse liver. Nature 291, 167–168 (1981). https://doi.org/10.1038/291167a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/291167a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing