Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Network structure in gels of rod-like polypeptides

Abstract

The formation of a mechanically self-supporting, macromolecular gel or network is understood on a molecular scale in terms of cross-links or branch points, either of a permanent nature by covalent bond formation, or of a reversible nature, such as in the gelation of gelatin. In thermally reversible gels each branch point may contain numerous monomeric units, indicative of local crystallite or aggregate formation, as in cellulose acetate1 or gelatin2–4, or only two monomeric units as in polyacrylylglycinamide5. The formation of reversible networks in nonionic, rod-like polypeptide homopolymers6–8, particularly at low concentrations (<0.1 wt%), is surprising in that the molecular origin of the branch points is not obvious. We have suggested previously8 that this network constitutes a thermo-dynamic phase resulting from a particular kinetic mechanism of phase formation made favourable by the unusual polymer–diluent phase equilibria occurring with stiff-chain polymers. Here, the network is visualized by electron microscopy, and shown to be compatible with the proposed mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Goebel, K. D. & Berry, G. C. J. Polym. Sci. pt A-2 15, 555–577 (1977).

    CAS  Google Scholar 

  2. Boedtker, H. & Doty, P. M. J. phys. Chem. 58, 968–983 (1954).

    Article  CAS  Google Scholar 

  3. Veis, A. The Macromolecular Chemistry of Gelatin (Academic, New York, 1964).

    Google Scholar 

  4. Rogovins, L. Z. & Slonimskii, G. L. Usp. Khim. 43, 1102–1135 (1974).

    Google Scholar 

  5. Haas, H. C., Chiklis, C. K. & Moreau, R. D. J. Polym. Sci. A-1 8, 1131–1145 (1970).

    Article  CAS  Google Scholar 

  6. Doty, P. M., Bradbury, J. H. & Holtzer, A. M. J. Am. chem. Soc. 78, 947–954 (1956).

    Article  CAS  Google Scholar 

  7. Miller, W. G. et al. Pure appl. Chem. 38, 37–58 (1974).

    Article  CAS  Google Scholar 

  8. Miller, W. G., Kou, L. J., Tohyama, K. & Voltaggio, V. J. Polym. Sci. Polym. Symp. 65, 91–106 (1978).

    Article  CAS  Google Scholar 

  9. Steere, R. L. & Erbe, E. F. Proc. 35th A. Electron Microscope Soc. Am. (ed. Bailey, G. W.) 606–608 (Claitors, Baton Rouge, 1977).

  10. van Emmerik, P. T., Smolders, C. A. & Geymayer, W. Eur. Polym. J. 9, 309–314 (1973).

    Article  CAS  Google Scholar 

  11. Möhlethaler, K. Makromolek. Chem. 2, 143–171 (1948).

    Article  Google Scholar 

  12. Theimer, W. Z. Naturforsch 15B, 346–350 (1960).

    Article  Google Scholar 

  13. Tohyama, K. & Miller, W. G. (in preparation).

  14. Cahn, J. W. & Milliard, J. E. J. chem. Phys. 31, 688–699 (1959); 42, 93–99 (1965).

    Article  ADS  CAS  Google Scholar 

  15. McMaster, D. L. P. in Copolymers, Polyblends and Composites 43–65 (Am. chem. Soc., Washington DC, 1975).

    Book  Google Scholar 

  16. Goldsbrough, J. Sci. Prog. 60, 281–297 (1972).

    CAS  Google Scholar 

  17. Jantzen, C. M. F. & Herman, H. in Phase Diagrams Vol.5 (ed. Alper, A. M.) Ch. 3 (Academic, New York, 1978).

    Google Scholar 

  18. van Aartsen, J. J. Eur. Polym. J. 6, 919–924 (1970).

    Article  CAS  Google Scholar 

  19. Smolders, C. A. van Aartsen, J. J. & Steenberger, A. Kolloid Zh. 243, 14–20 (1971).

    Article  CAS  Google Scholar 

  20. Miller, W. G. A. Rev. phys. Chem. 29, 519–535 (1978); see refs therein.

    Article  ADS  CAS  Google Scholar 

  21. Pines, E. & Prins, W. Macromolecules 6, 888–895 (1973).

    Article  ADS  CAS  Google Scholar 

  22. Flory, P. J. Proc. R. Soc. A234, 73–89 (1956).

    ADS  CAS  Google Scholar 

  23. Chakrabarti, S., Tohyama, K. & Miller, W. G. (in preparation).

  24. Oosawa, F. & Asakura, S. Thermodynamics of the Polymerization of Protein (Academic, New York, 1975).

    Google Scholar 

  25. Bawden, F. C. & Pirie, N. W. Proc. R. Soc. B123, 274–320 (1937).

    ADS  CAS  Google Scholar 

  26. Hartwig, J. H. & Stossel, T. P. J. molec. Biol. 134, 539–553 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tohyama, K., Miller, W. Network structure in gels of rod-like polypeptides. Nature 289, 813–814 (1981). https://doi.org/10.1038/289813a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/289813a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing