Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Induction of cell–cell channel formation by mRNA

Abstract

Intercellular junctional communication is very common in normal organized tissue1. It provides a pathway for transmission of electrical signals, especially in heart muscle2,3, and may be important in differentiation and growth control1,4. The hydrophilic channels which enable cell–cell communication have been well characterized by biophysical methods5,6, and there is now good evidence that they are contained in the nexus (gap junctions)3,7–9. Little, however, is known about the molecular mechanism of biosynthesis of junctional channels. Knowledge in this area has been obtained almost exclusively from experiments with reaggregated cells10–15, a system complicated by the fact that de novo synthesis of channel proteins is obscured by reassembly of pre-existing subunits or utilization of precursors. To avoid these problems, we have now isolated mRNA from cells that are in the process of making new intercellular nexus with high efficiency, incorporated it via liposomes into communication-defective cells and have shown that the recipient cells established junctional communication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Loewenstein, W. R. Biochim. biophys. Acta 560, 1–65 (1979).

    CAS  PubMed  Google Scholar 

  2. Weidmann, S. J. Physiol., Land. 118, 348–360 (1952).

    Article  CAS  Google Scholar 

  3. Barr, L., Dewey, M. M. & Berger, W. J. gen. Physiol. 48, 797–823 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Loewenstein, W. R. Devi Biol. 19, Suppl. 2, 151–183 (1968).

    Google Scholar 

  5. Loewenstein, W. R. Cold Spring Harb. Symp. quant. Biol. 40, 49–63 (1975).

    Article  Google Scholar 

  6. Flagg-Newton, J., Simpson, I. & Loewenstein, W. R. Science 205, 404–407 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. McNutt, N. S. & Weinstein, R. S. Prog. Biophys. molec. Biol. 26, 45–101 (1973).

    Article  CAS  Google Scholar 

  8. Caspar, D. L. D., Goodenough, D. A., Malkowsky, L. & Phillips, W. C. J. Cell Biol. 74, 605–628 (1977).

    Article  CAS  PubMed  Google Scholar 

  9. Unwin, P. N. T. & Zampighi, G. Nature 283, 545–549 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Loewenstein, W. R. Devl Biol. 15, 503–520 (1967).

    Article  CAS  Google Scholar 

  11. Ito, S., Sato, E. & Loewenstein, W. R. J. Membrane Biol. 19, 305–337 (1974).

    Article  CAS  Google Scholar 

  12. DeHaan, R. L. & Hirakow, R. Expl Cell Res. 70, 214–220 (1972).

    Article  CAS  Google Scholar 

  13. Hammer, M., Epstein, M. & Shridan, J. J. Cell Biol. 59, 130a (1973).

    Google Scholar 

  14. Epstein, M. L., Sheridan, J. D. & Johnson, R. G. Expl Cell Res. 104, 25–30 (1977).

    Article  CAS  Google Scholar 

  15. Griepp, E. B. & Bernfield, M. R. Circulation 52, Suppl. 2, 106 (1975).

    Google Scholar 

  16. Dahl, G. & Berger, W. Cell Biol. int. Rep. 2, 381–387 (1978).

    Article  CAS  PubMed  Google Scholar 

  17. Garfield, R. E., Sims, S. M., Kannan, M. S. & Daniel, E. E. Am. J. Physiol. 235, C168–C179 (1978).

    Article  CAS  PubMed  Google Scholar 

  18. Merk, F. B., Botticelli, C. R. & Albright, J. T. Endocrinology 90, 992–1007 (1972).

    Article  CAS  PubMed  Google Scholar 

  19. Decker, R. S. J. Cell Biol. 69, 669–685 (1976).

    Article  CAS  PubMed  Google Scholar 

  20. Decker, R. S., Donta, S. T., Larsen, W. J. & Murray, S. A. J. supramolec. Struct. 9, 497–507 (1978).

    Article  CAS  Google Scholar 

  21. Henderson, D., Eibl, H. & Weber, K. J. molec. Biol. 132, 193–218 (1979).

    Article  CAS  PubMed  Google Scholar 

  22. Hertzberg, E. L. & Gilula, N. B. J. biol. Chem. 254, 2138–2147 (1979).

    CAS  PubMed  Google Scholar 

  23. Finbow, M., Yancey, S. B., Johnson, R. & Revel, J. P. Proc. natn. Acad. Sci. U.S.A. 77, 970–974 (1980).

    Article  ADS  CAS  Google Scholar 

  24. Szoka, F. & Papahadjopoulos, D. Proc. natn. Acad. Sci. U.S.A. 75, 4194–4198 (1978).

    Article  ADS  CAS  Google Scholar 

  25. Azarnia, R., Larsen, W. J. & Loewenstein, W. R. Proc natn. Acad. Sci. U.S.A. 71, 880–884 (1974).

    Article  ADS  CAS  Google Scholar 

  26. Rash, J. E. & Fambrough, D. Devi Biol. 30, 168–186 (1973).

    Article  Google Scholar 

  27. Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J. & Rutter, W. J. Biochemistry 18, 5294–5299 (1979).

    Article  CAS  PubMed  Google Scholar 

  28. Kryxtosek, A., Cawthon, M. L. & Kabat, D. J. biol. Chem. 250, 6077–6084 (1975).

    Google Scholar 

  29. Pauli, B. K., Weinstein, R. S., Soble, L. W. & Alroy, J. J. Cell Biol. 72, 763–769 (1977).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahl, G., Azarnia, R. & Werner, R. Induction of cell–cell channel formation by mRNA. Nature 289, 683–685 (1981). https://doi.org/10.1038/289683a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/289683a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing