Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cenozoic palaeotemperature changes and planktonic foraminiferal speciation

Abstract

The interaction of plate movements and progressive climatic deterioration produced a constantly changing oceanic environment during the Cenozoic. The destruction of the Tethyan Seaway and the severing of low-latitude oceanographic connections during the past 65 Myr (ref. 1), coupled with the initiation of unrestricted circum-Antarctic circulation in the middle to late Oligocene2, provided the necessary boundary conditions for the development of a global ocean marked by steep latitudinal temperature gradients. This is in contrast to the rather mild climate of the Mesozoic, which was characterized by an ocean with a homogeneous thermal structure and weak latitudinal temperature gradients1. Throughout the Cenozoic, marine plankton were constantly adapting to major changes in the oceanic environment. This can be seen, for example, in the continual development of latitudinal provincialization as a response to polar coolings1,3. Here I attempt to evaluate the relationship between palaeotemperature change and planktonic foraminiferal speciation during the past 65 Myr.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Berggren, W. A. & Hollister, C. D. Soc. Econ. Paleont. Mineral., Spec Publ. 20, 126–186 (1974); Tectonophysics 38, 11–48 (1977).

    Google Scholar 

  2. Kennett, J. P. J geophys. Res. 82, 3843–3860 (1977).

    Article  ADS  CAS  Google Scholar 

  3. Kennett, J. P. Mar. Micropaleont. 3, 301–345 (1978).

    Article  ADS  Google Scholar 

  4. Berggren, W. A. Micropaleontology 15, 351–365 (1969).

    Article  Google Scholar 

  5. Cifelli, R. S. Syst. Zool. 18, 154–168 (1969).

    Article  Google Scholar 

  6. Lipps, J. H. Evolution 24, 1–22 (1970).

    Article  Google Scholar 

  7. Frerichs, W. E. J. Paleont. 45, 963–968 (1971).

    Google Scholar 

  8. Fischer, A. G. & Arthur, M. A. Soc. Econ. Paleont. Mineral. Spec. Publ. 25, 19–50 (1977).

    Google Scholar 

  9. Stehli, F. G., Douglas, R. G. & Newell, N. D. Science 164, 947–949 (1969).

    Article  ADS  CAS  Google Scholar 

  10. Hart, M. B. Nature 286, 252–254 (1980).

    Article  ADS  Google Scholar 

  11. Steineck, P. L. & Fleischer, R. L. J. Paleont. 52, 618–635 (1978).

    Google Scholar 

  12. Saunders, J. B. et al. Init. Rep. DSDP Leg 15, 796–771 (1973).

    Google Scholar 

  13. Bolli, H. M. Init. Rep. DSDP Leg 4, 557–643 (1970).

    Google Scholar 

  14. Bolli, H. M. & Premoli Silva, I. Init. Rep. DSDP Leg 15, 475–497 (1973).

    Google Scholar 

  15. Premoli Silva, I. & Bolli, H. M. Init. Rep. DSDP Leg 15, 499–547 (1973).

    Google Scholar 

  16. Blow, H. W. Int. Conf. Plank. Microfossils, Geneva, 199–422 (1969).

  17. Bolli, H. M. Bull. U. S. Nat. Mus. 215, 97–123 (1957); 215, 155–172 (1957).

    Google Scholar 

  18. Bolli, H. M. & Bermudez, P. J. Bull. Ass. Venez. geol. Miner. Petrol. 8, 119–149 (1965).

    Google Scholar 

  19. Berggren, W. A. Lethaia 5, 195–215 (1972).

    Article  Google Scholar 

  20. Savin, S. M. A. Rev. Earth planet. Sci. 5, 319–355 (1977).

    Article  ADS  CAS  Google Scholar 

  21. Kennett, J. P. & Shackleton, N. J. Nature 260, 513–515 (1976).

    Article  ADS  CAS  Google Scholar 

  22. Shackleton, N. J. & Kennett, J. P. Init. Rep. DSDP Leg 29, 743–755 (1975).

    CAS  Google Scholar 

  23. Berggren, W. A. Init. Rep. DSDP Leg 12, 953–963 (1972).

    Google Scholar 

  24. Shackleton, N. J. & Kennett, J. P. Init. Rep. DSDP Leg 29, 801–807 (1975).

    CAS  Google Scholar 

  25. Shackleton, N. J. & Opdyke, N. D. Nature 270, 216–217 (1977).

    Article  ADS  CAS  Google Scholar 

  26. Keigwin, L. D. & Thunell, R. C. Nature 282, 294–296 (1979).

    Article  ADS  CAS  Google Scholar 

  27. Berggren, W. A. Proc. 11th Plank. Conf., Rome, 41–56 (1971).

  28. Boersma, A. & Shackleton, N. J. Init. Rep. DSDP Leg, 39, 911–924 (1977).

    CAS  Google Scholar 

  29. Vergnaud-Grazzini, C. Init. Rep. DSDP Leg 47, 507–511 (1979).

    CAS  Google Scholar 

  30. Corliss, B. H. Nature 282, 63–65 (1979).

    Article  ADS  Google Scholar 

  31. Vail, P. R., Mitchum, R. M. Jr & Thompson, S. Mem. Am. Ass. petrol. Geol. 26, 83–97 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thunell, R. Cenozoic palaeotemperature changes and planktonic foraminiferal speciation. Nature 289, 670–672 (1981). https://doi.org/10.1038/289670a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/289670a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing