Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Vacuoles as storage compartments for nitrate in barley leaves

Abstract

Nitrate, the principal nitrogen source of most plants, can accumulate in large quantities in certain crop plants, notably members of the Chenopodiaceae (spinach and beet), Gramineae, Cruciferae (radish and kale) and Compositae (lettuce). Concentrations may exceed 2% fresh weight (17–24% dry weight) in extreme physiological conditions1. This is alarming because nitrate is readily reduced in organisms to the toxic nitrite, which may react with amines to form very potent carcinogenic nitrosamines2. Large stores of nitrate can be maintained in plant cells even in the presence of high nitrate reductase activity3–8. Incoming nitrate does not seem to mix with existing stores4–6,9 and a steady influx of nitrate into the cells was found to be necessary to keep nitrate reductase stably induced3,6. Such observations have been explained by postulating a small ‘metabolic’ pool of nitrate accessible to nitrate reductase4 and presumably also responsible for the induction of the enzyme3, and a large ‘storage’ pool separate from the sites of metabolism3–9,14. Repeated attempts to measure these pools by an indirect method4 have given equivocal results1,10, but storage pools of nitrate have been generally thought to be located in vacuoles, which are difficult to isolate and analyse. However, we were able to isolate and purify the large central vacuoles of barley mesophyll cells and found most of the accumulated nitrate in the vacuoles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hewitt, E. J., Hucklesby, D. P., Mann, A. F., Notion, B. A. & Rucklidge, G. J. in Nitrogen Assimilation of Plants (eds Hewitt, E. J. & Cutting, C. V.) 255–287 (Academic, London, 1979).

    Google Scholar 

  2. Walters, C. L. & Walker, R. in Nitrogen Assimilation of Plants (eds Hewitt, E. J. & Cutting, C. V.) 637–648 (Academic, London, 1979).

    Google Scholar 

  3. Heimer, J. & Filner, P. Biochim. biophys. Acta 230, 362–372 (1971).

    Article  CAS  Google Scholar 

  4. Ferrari, E. T., Yoder, O. C. & Filner, P. Pl. Physiol. 51, 423–431 (1973).

    Article  CAS  Google Scholar 

  5. Aslam, M., Oaks, A. & Huffaker, R. C. Pl. Physiol. 58, 588–591 (1976).

    Article  CAS  Google Scholar 

  6. Shaner, D. L. & Boyer, J. S. Pl. Physiol. 58, 499–504 (1976).

    Article  CAS  Google Scholar 

  7. Jones, R. W. & Sheard, R. W. in Nitrogen Assimilation of Plants (eds Hewitt, E. J. & Cutting, C. V.) 521–539 (Academic, London, 1979).

    Google Scholar 

  8. Ashley, D. A., Jackson, W. A. & Volk, R. J. Pl. Physiol. 55, 1102–1106 (1975).

    Article  CAS  Google Scholar 

  9. Martin, P. Z. Pflanzenphysiol. 70, 158–165 (1973).

    Article  CAS  Google Scholar 

  10. Hageman, R. H., Reed, A. J., Femmer, R. A., Sherrard, J. H. & Dalling, M. J. Pl. Physiol. 65, 27–32 (1980).

    Article  CAS  Google Scholar 

  11. Wiemken, A., Schellenberg, M. & Urech, L. Archs Microbiol. 123, 23–35 (1979).

    Article  CAS  Google Scholar 

  12. Boller, Th. & Kende, H. Pl. Physiol. 63, 1123–1132 (1979).

    Article  CAS  Google Scholar 

  13. Nishimura, M. & Beevers, H. Pl. Physiol. 62, 44–48 (1978).

    Article  CAS  Google Scholar 

  14. Oaks, A. & Bidwell, R. G. S. An. Rev. Pl. Physiol. 21, 43–66 (1970).

    Article  CAS  Google Scholar 

  15. Matile, P. An. Rev. Pl. Physiol. 29, 193–213 (1978).

    Article  CAS  Google Scholar 

  16. Wallsgrove, R. M., Lea, P. J. & Milfin, B. J. Pl. Physiol. 63, 232–236 (1979).

    Article  CAS  Google Scholar 

  17. Wiemken, A. & Dürr, M. Archs Microbiol. 101, 45–57 (1974).

    Article  CAS  Google Scholar 

  18. Dürr, M., Urech, K., Boiler Th., Wiemken, A., Schwencke, J. & Nagy, M. Archs Microbiol. 121, 169–175 (1979).

    Article  Google Scholar 

  19. Sasse, F., Backs-Hüsemann, D. & Barz, W. Z. Naturf. 34 c, 848–853 (1979).

    Article  Google Scholar 

  20. Stewart, G. R. in Nitrogen Assimilation of Plants (eds Hewitt, E. J. & Cutting, C. V.) 651–652 (Academic, London, 1979).

    Google Scholar 

  21. Srivastava, H. S. Phytochem. 19, 725–733 (1980).

    Article  CAS  Google Scholar 

  22. Bergmeyer, H. U. Methods of Enzymatic Analysis 2nd edn (Verlag and Academic, New York and London, 1974).

    Google Scholar 

  23. Hageman, R. H. & Hucklesby, D. P. Meth. Enzym. 23, 491–503 (1971).

    Article  Google Scholar 

  24. Hartman, K. et al. Mikrochim. Acta II, 235–246 (1978).

    Article  Google Scholar 

  25. Nielsen, H. J. & Hansen, E. H. Analytica chim. Acta 85, 1–16 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinoia, E., Heck, U. & Wiemken, A. Vacuoles as storage compartments for nitrate in barley leaves. Nature 289, 292–294 (1981). https://doi.org/10.1038/289292a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/289292a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing