Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cosmic ray antiprotons and modified closed galaxy model

Abstract

Observations suggest that a small flux of secondary antiprotons (p̄), created in the interaction of cosmic ray nuclei with interstellar gas, should also be present in the primary cosmic radiation. Calculations based on accelerator data for the production of p̄ and existing models for the propagation of cosmic rays, predict too small a flux of p̄ compared with the finite flux observed recently1. Although the observed excess could be attributed to the existence of primary cosmic ray antimatter, the experimental upper limits2,3 of the ratio of antinuclei to nuclei of charge |Z| ≥ 2 seem to contradict this. Here we use a ‘modified closed galaxy’ model to attribute this excess to secondary antiprotons. In this model, 50% of the observed cosmic ray nucleons are of recent origin and they propagate according to the ‘nested leaky box’ model, while the rest propagate according to ‘closed galaxy’ model. This model explains the observations on p̄ and e+, and predicts more D and 3He than do the existing models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Golden, R. L. et al. Phys. Rev. Lett. 43, 1196–1199 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Badhwar, G. D. et al. Nature 274, 137–139 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Smoot, G. F., Buffington, A. & Orth, C. D. Phys. Rev. Lett. 35, 258–261 (1975).

    Article  ADS  CAS  Google Scholar 

  4. Gaisser, T. K. & Maurer, R. H. Phys. Rev. Lett. 30, 1264–1267 (1973).

    Article  ADS  CAS  Google Scholar 

  5. Badhwar, G. D., Golden, R. L., Brown, M. L. & Lacy, J. L. Astrophys. Space Sci. 37, 283–300 (1975).

    Article  ADS  Google Scholar 

  6. Szabelski, J., Wdowczyk, J. & Wolfendale, A. W. Nature 285, 386–388 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Stephens, S. A. Astrophys. Space Sci. (in the press).

  8. Orth, C. D., Buffington, A., Smoot, G. F. & Mast, T. S. Astrophys. J. 226, 1147–1161 (1978).

    Article  ADS  CAS  Google Scholar 

  9. Juliusson, E., Mayer, P. & Muller, D. Phys. Rev. Lett. 29, 445–448 (1972).

    Article  ADS  CAS  Google Scholar 

  10. Cowsik, R. & Wilson, L. W. Proc. 13th int. Cosmic Ray Conf. 1, 500–505 (1973).

    ADS  CAS  Google Scholar 

  11. Bogomolov, E. A. et al. Proc. 16th int. Cosmic Ray Conf. 1, 330–335 (1979).

    ADS  CAS  Google Scholar 

  12. Daniel, R. R. & Stephens, S. A. Bull. astr. Soc. Ind. (in the press).

  13. Rasmussen, I. L. & Peters, B. Nature 258, 412–413 (1975).

    Article  ADS  CAS  Google Scholar 

  14. Badhwar, G. D. & Stephens, S. A. Proc. 15th int. Cosmic Ray Conf. 1, 398–403 (1977).

    ADS  Google Scholar 

  15. Badhwar, G. D. & Stephens, S. A. Phys. Rev. D 14, 356–358 (1976).

    ADS  CAS  Google Scholar 

  16. Buffington, A., Orth, C. D. & Mast, T. S. Astrophys. J. 226, 355–371 (1978).

    Article  ADS  CAS  Google Scholar 

  17. Fanselow, J. L., Hartman, R. C., Hildebrand, R. H. & Mayer, P. Astrophys. J. 158, 771–780 (1969).

    Article  ADS  Google Scholar 

  18. Golden, R. L. et al. Preprint PSL-PE00947 (1979).

  19. Buffington, A. & Orth, C. D. Astrophys. J. 199, 669–679 (1975).

    Article  ADS  Google Scholar 

  20. Peters, B. & Westergaard, N. J. Astrophys. Space Sci. 48, 21–46 (1977).

    Article  ADS  CAS  Google Scholar 

  21. Daniel, R. R. & Stephens, S. A. Space Science Review 17, 45–158 (1975).

    Article  ADS  Google Scholar 

  22. Badhwar, G. D., Stephens, S. A. & Golden, R. L. Proc. 14th int. Cosmic Ray Conf. 9, 3183–3187 (1975).

    ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stephens, S. Cosmic ray antiprotons and modified closed galaxy model. Nature 289, 267–269 (1981). https://doi.org/10.1038/289267a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/289267a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing