Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for the inducibility of the uvrB operon

Abstract

A new tool for probing the regulation of non-essential gene products has recently been developed1—this is a derivative of bacteriophage Mu into which the Escherichia coli genes for lactose metabolism have been fused (referred to here as Mu(lac, amp)). The DNA of this defective virus can insert randomly into the chromosome of a cell and mutants canbe retrieved in which the β-galactosidase gene carried on the phage is under the control of the regulatory elements of the operon in which it now resides.We used this phage to generate DNA repair-deficient mutants, one of which washighly UV-sensitive due to insertion of the Mu(lac, amp) into the uvrB regionof the chromosome. When exposed to UV light, this strain produces β-galactosidase at a much greater rate than unexposed cells. This suggests that the uvrB operon is inducible. These results were initially rather surprising. Although various components of the enzyme systems involved in Weigle-reactivation2,3, post-replication repair4–6 and repair of alkylation damage7,8 had been established as inducible, the products of the uvrA, uvrB and uvrC genes which collectively effect nucleotide excision repair9–11, seemed to be firmly established as a constitutively synthesized repair system. This conclusion was drawn because the activity of these enzymes can be easily detected in uninduced cells9–11; and mutations in the genes recA and lexA, which affect the regulation of most of the inducible repair systems12, have relatively little effect on uvrA, uvrB -mediated excision repair13. Thus the uvrA and uvrB gene products seemed to be produced constitutively at maximal or near maximal rates. However, recent reports suggest a role for the uvrA and uvrB gene products in various inducible repair systems6,14–17. Because these studies all relied on indirect measurements of induction, it could never be determined if the results reflected induction of other components of these systems or if the uvrA or uvrB gene products themselves were regulated. The insertion mutant described here allowed us to monitor expression of the uvrB operon directly and provided evidence for regulated synthesis of the uvrB gene product.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Casadaban, M. J. & Cohen, S. N. Proc. natn. Acad. Sci. U.S.A. 76, 4530–4533 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Defais, M., Fauquet, P., Radman, M. & Errera, M. Virology 43, 495–503 (1971).

    Article  CAS  PubMed  Google Scholar 

  3. Defais, M., Caillet-Fauquet, P., Fox, M. S. & Radman, M. Molec. gen. Genet. 148, 125–130 (1976).

    Article  CAS  PubMed  Google Scholar 

  4. Sedgwick, S. G. Proc. natn. Acad. Sci. U.S.A. 72, 2753–2757 (1975).

    Article  ADS  CAS  Google Scholar 

  5. Youngs, D. A. & Smith, K. C. J. Bact. 125, 102–110 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ganesan, A. K., Seawell, P. C., Mount, D. W. J. Bact. 135, 935–942 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Samson, L. & Cairns, J. Nature 267, 281–282 (1977).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Jeggo, P., Defais, M., Samson, L. & Schendel, P. Molec. gen. Genet. 157, 1–9 (1977).

    Article  CAS  PubMed  Google Scholar 

  9. Braun, A. & Grossman, L. Proc. natn. Acad. Sci. U.S.A. 71, 1838–1842 (1974).

    Article  ADS  CAS  Google Scholar 

  10. Braun, A. G., Radman, M. & Grossman, L. Biochemistry 15, 4116–4120 (1976).

    Article  CAS  PubMed  Google Scholar 

  11. Seeberg, E. Proc. natn. Acad. Sci. U.S.A. 75, 2569–2573 (1978).

    Article  ADS  CAS  Google Scholar 

  12. Witkin, E. M. Bact. Rev. 40, 869–907 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Howard-Flanders, P. & Boyce, R. P. Radiat. Res. Suppl. 6, 156–184 (1966).

    Article  Google Scholar 

  14. Mount, D. W., Kosel, C. K. & Walker, A. Molec. gen. Genet. 146, 37–41 (1976).

    Article  CAS  PubMed  Google Scholar 

  15. Clark, A. J. & Volkert, M. R. in DNA Repair Mechanisms (eds Hanawalt, P. C., Friedberg, E. C. & Fox, C. F.) 57–72 (Academic, New York, 1978).

    Book  Google Scholar 

  16. Rothman, R. H., Margossian, L. J. & Clark, A. J. Molec. gen. Genet. 169, 279–287 (1979).

    Article  CAS  PubMed  Google Scholar 

  17. Walker, G. C. & Dobson, P. P. Molec. gen. Genet. 172, 17–24 (1979).

    Article  CAS  PubMed  Google Scholar 

  18. Cuzin, F. & Jacob, F. C.r. hebd. Séanc. Acad. Sci., Paris 258, 1350–1352 (1964).

    Google Scholar 

  19. Howard-Flanders, P., Boyce, R. P. & Theriot, L. Genetics 53, 1119–1136 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kato, T., Rothman, R. H. & Clark, A. J. Genetics 87, 1–18 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bachmann, B. J. & Low, K. B. Microbiol. Rev. 44, 1–56 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Miller, J. H. in Experiments in Molecular Genetics (Cold Spring Harbor Press, New York, 1972).

    Google Scholar 

  23. Rupp, W. D., Sancar, A., Kennedy, W. J., Ayers, J. & Griswold, J. in DNA Repair Mechanisms (eds Hanawalt, P. C., Friedberg, E. C. & Fox, C. F.) 229–235 (Academic, New York, 1978).

    Book  Google Scholar 

  24. Elespuru, R. K. & Yarmolinsky, M. B. Envir. Mutat, 1, 65–78 (1979).

    Article  CAS  Google Scholar 

  25. Kenyon, C. J. & Walker, G. C. Proc. natn. Acad.Sci. U.S.A. 77, 2819–2823 (1980).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fogliano, M., Schendel, P. Evidence for the inducibility of the uvrB operon. Nature 289, 196–198 (1981). https://doi.org/10.1038/289196a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/289196a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing