Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interferon inhibits transformation by murine sarcoma viruses before integration of provirus

Abstract

Neoplastic transformation by C-type retroviruses requires synthesis of a DNA copy (the provirus) of the RNA genome and its integration into the host cell DNA. We have previously shown that interferon (IFN) can stably prevent transformation of murine fibroblasts by the Kirsten strain of murine sarcoma virus (KiMSV)1,2, a murine leukaemia virus (MLV). A series of cell clones (IFN clones), isolated in the presence of IFN (104 U ml−1) from cultures of NIH-3T3 cells which had been treated with IFN, and then infected with KiMSV (KiMLV) in conditions where every cell was infected, were shown to be phenotypically untransformed. These untransformed cells did not produce virus or contain rescuable KiMSV. However, cells isolated using an identical procedure, but in the absence of IFN, were uniformly transformed and all produced KiMSV (KiMLV) or contained rescuable KiMSV2,3. It was concluded that IFN either prevents synthesis or integration of the provirus, or else that in the presence of IFN the provirus is integrated such that it is not expressed. We now show that five representative clones contain no detectable KiMSV proviral DNA, and also that the initial stages of infection by KiMSV (KiMLV) are inhibited by IFN treatment. IFN seems to act before integration, preventing either the synthesis or the integration of proviral DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Morris, A. G. & Clegg, C. Virology 88, 400–402 (1978).

    Article  CAS  PubMed  Google Scholar 

  2. Morris, A. G. & Burke, D. C. J. gen. Virol. 43, 173–181 (1979).

    Article  CAS  PubMed  Google Scholar 

  3. Morris, A., Clegg, C., Jones, J., Rodgers, B. & Avery, R. J. J. gen. Virol. 49, 105–113 (1980).

    Article  CAS  PubMed  Google Scholar 

  4. Steffen, D. & Weinberg, R. A. Cell 15, 1003–1010 (1978).

    Article  CAS  PubMed  Google Scholar 

  5. Taylor, J. M., Illmensee, R. & Summers, J. Biochim biophys. Acta 442, 324–330 (1976).

    Article  CAS  PubMed  Google Scholar 

  6. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  PubMed  Google Scholar 

  7. Ruprecht, R. M., Goodman, N. C. & Spiegelman, S. Biochim. biophys. Acta 294, 192–203 (1973).

    Article  CAS  PubMed  Google Scholar 

  8. Shank, P. R. et al. Cell 15, 1383–1395 (1978).

    Article  CAS  PubMed  Google Scholar 

  9. Thomas, M. & Davis, R. W. J. molec. Biol. 91, 315–328 (1975).

    Article  CAS  PubMed  Google Scholar 

  10. Wellauer, P. K. et al. Proc. natn. Acad. Sci. U.S.A. 71, 2823–2827 (1974).

    Article  ADS  CAS  Google Scholar 

  11. Aboud, M., Shoor, R. & Salzberg, S. J. Virol. 30, 32–37 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sonnabend, J. A. & Friedman, R. M. in Interferons and Interferon Inducers (ed. Finter, N. B.) 201–239 (North-Holland, Amsterdam, 1973).

    Google Scholar 

  13. Reznikoff, C. A., Brankow, D. W. & Heidelberger, C. Cancer Res. 33, 3231–3238 (1973).

    CAS  PubMed  Google Scholar 

  14. Fritsch, E. F. & Temin, H. M. J. Virol. 24, 461–469 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Varmus, H. E., Padgett, T., Heasley, S., Simon, G. & Bishop, J. M. Cell 11, 307–319 (1977).

    Article  CAS  PubMed  Google Scholar 

  16. Parsons, J. T., Coffin, J. M., Haroz, R. K., Bromley, P. A. & Weissmann, C. J. Virol. 11, 761–774 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sveda, M. M., Fields, B. N. & Soeiro, R. J. Virol. 18, 85–91 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Takano, T. & Hatanaka, M. Proc. natn. Acad. Sci. U.S.A. 72, 343–347 (1975).

    Article  ADS  CAS  Google Scholar 

  19. Krontiris, T. G., Soeiro, R. & Fields, B. N. Proc. natn. Acad. Sci. U.S.A. 70, 2549–2553 (1973).

    Article  ADS  CAS  Google Scholar 

  20. Jolicoeur, P. & Baltimore, D. Proc. natn. Acad. Sci. U.S.A. 73, 2236–2240 (1973).

    Article  ADS  Google Scholar 

  21. Sveda, M. & Soeiro, R. Proc. natn. Acad. Sci. U.S.A. 73, 2356–2360 (1976).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avery, R., Norton, J., Jones, J. et al. Interferon inhibits transformation by murine sarcoma viruses before integration of provirus. Nature 288, 93–95 (1980). https://doi.org/10.1038/288093a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/288093a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing