Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tidal effects on the mass profile of galactic haloes

Abstract

Most spiral galaxies are believed to be embedded in dark massive haloes1,2. The main observational evidence for their presence is the rotation curves of edge-on disks at large radii measured both by optical3,23 and radio (21cm)4 techniques: rotation velocities remain constant to distances of several tens of kiloparsecs, far beyond the main visible bodies of the galaxies. This suggests the existence of a dark halo whose mass, if spherical, varies linearly with distance R from the galactic centre and hence has a density profile which falls off as R−2. The extended ‘flat’ shape of the haloes poses a problem for most theoretical hypotheses of galaxy formation because simulations of collapse5–8 and of violent mergers9 predict a spherical density profile which is rather Hubble-like (ρR−3) or even steeper. The time scale for two-body relaxation, which can lead to a flatter, isothermal, density profile, is much larger than the Hubble time. If, as Gunn10 and Gott6 have suggested, secondary cosmological infall produces the ρR−2 haloes, special initial conditions are required: (1) the central perturbation, which is the progenitor of the galaxy, needs to be initially embedded in a bound homogeneous background—an assumption which might not be fully justified for relatively isolated galaxies; and, (2) the infall must be such that there is no dissipation so that most of the mass should already be in the form of compact objects before halo formation. We suggest, as an alternative mechanism, tidal interactions between haloes, or possibly between their smaller building blocks, while in the hierarchical gravitational clustering process. In this process typical tidal encounters are slow, such that relative orbital velocities of the interacting systems are comparable to the internal velocities of the stars in each system. The two systems are slightly unbound.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ostriker, J. P., Peebles, P. J. E. & Yahil, A. Astrophys. J. Lett. 193, L1 (1974).

    Article  ADS  Google Scholar 

  2. Faber, S. M. & Gallagher, J. S. A. Rev. Astr. Astrophys. 17, 135 (1979).

    Article  ADS  Google Scholar 

  3. Rubin, V. C. Comments Astrophys. 8, 79 (1978).

    ADS  Google Scholar 

  4. Krumm, N. & Salpeter, E. E. Astr. Astrophys. 56, 465 (1977).

    ADS  CAS  Google Scholar 

  5. Peebles, P. J. E. Astr. J. 75, 13 (1970).

    Article  ADS  Google Scholar 

  6. Gott, J. R. Astrophys. J. 186, 481 (1973); 201, 296 (1975); Ann. Rev. Astr. Astrophys. 15, 235 (1977).

    Article  ADS  Google Scholar 

  7. Aarseth, S. J. & Lecar, M. A. Rev. Astr. Astrophys. 13, 1 (1975).

    Article  ADS  Google Scholar 

  8. Larson, R. B. Mon. Not. R. astr. Soc. 166, 585; 169, 229 (1974); 173, 671 (1975).

    Article  ADS  Google Scholar 

  9. White, S. D. M. Mon. Not. R. astr. Soc. 184, 185 (1978).

    Article  ADS  Google Scholar 

  10. Gunn, J. E. Astrophys. J. 218, 592 (1977).

    Article  ADS  Google Scholar 

  11. Dekel, A., Lecar, M. & Shaham, J. Astrophys. J. (in the press).

  12. Bergeron, J. & Gunn, J. E. Astrophys. J. 217, 892 (1977).

    Article  ADS  CAS  Google Scholar 

  13. Rees, M. J. in The Evolution of Galaxies and Stellar Populations (eds Tinsley, B. M. & Larson, R. B.) 339 (Yale University Observatory, 1978).

    Google Scholar 

  14. Peebles, P. J. E. in Physical Cosmology (Gordon and Breach, Edinburgh, in the press).

  15. Dekel, A. & Shaham, J. Astr. Astrophys. 74, 186 (1979); Preprint. Hebrew Univ. of Jerusalem (1980).

    ADS  CAS  Google Scholar 

  16. Aarseth, S. J. Gravitational N-body Problem (ed. Lecar, M.) 373 (Reidel. Dordrecht. Holland, 1972).

    Book  Google Scholar 

  17. Ahmad, A. & Cohen, L. J. comp. Phys. 12, 389 (1973).

    Article  ADS  Google Scholar 

  18. Layzer, D. Gen. Rel. Gravit. 8, 3 (1977).

    Article  ADS  Google Scholar 

  19. DaCosta, L. N. & Knobloch, E. Astrophys. J. 230, 639 (1979).

    Article  ADS  Google Scholar 

  20. Roos, N. & Norman, C. A. Astr. Astrophys. 76, 75 (1979).

    ADS  Google Scholar 

  21. Aarseth, S. J. & Fall, S. M. Astrophys. J. 236, 43 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  22. White, S. D. M. & Rees, M. J. Mon. Not. R. astr. Soc. 183, 341 (1978).

    Article  ADS  Google Scholar 

  23. Rubin, V. C., Ford, W. K. Jr & Thonnard, N. Preprint, Carnegie Inst. of Washington (1980).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dekel, A., Lecar, M. & Shaham, J. Tidal effects on the mass profile of galactic haloes. Nature 286, 135–136 (1980). https://doi.org/10.1038/286135a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/286135a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing