Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Accretion and episodic plutonism

Abstract

Episodic calc-alkaline igneous activity in magmatic arcs contrasts with steady-state magmatism accompanying seafloor spreading. Gilluly1 examined this apparent anomaly in western North America and he and Lanphere and Reed2 concluded that igneous activity has been more or less continuous over the entire North American Cordillera since the Triassic. A similar view was held by Pitcher3 for the coastal batholith of Peru. Numerous studies, however, support the view that episodic magmatism characterizes areas of local to regional scale along convergent plate margins1,2,4–12. Grow and Atwater13 suggested that increased magmatic activity in Alaska might have been induced by subduction of a spreading ridge. If so, episodic igneous activity could be produced by successive subduction events involving spreading centres8. Dickinson7 suggested a model involving frictional heating along the Benioff zone, accumulation of magma above that zone, and periodic magmatism triggered by an unknown condition or event. However, he later8 proposed that regional episodicity is a function of the interaction between a specific site and a wavering (migrating back and forth) magmatic axis that occasionally passes through the site to produce a magmatic event. Migration of the magmatic axis results from accretion or erosion at the trench, variation in the dip of the subduction zone, and (or) reorganization of plate movements8,14–16. Shaw et al.17 suggest tidal power as a source of mechanical energy which, through periodic variations in shear melting of the mantle, produces magmatic periodicity. In contrast, Gilluly1 suggests that variations in the properties of the mantle and of the crust of the subducting plate may be responsible for magmatic episodicity. We propose an alternate explanation for local to regional plutonic episodicity. Although this ‘episodic accretion plutonism model’, is based on data from California, it is applicable to other segments of orogenic belts including southwestern Alaska, southern Japan and western Indonesia. We limit the discussion of igneous activity to plutonism, as geochronological data suggest that volcanism is not simply the surficial expression of plutonism. This possibility is supported by a recent re-evaluation of Andean magmatism18. We shall discuss the problem of volcanism and its relationship to accretion and plutonism elsewhere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gilluly, J. Bull. geol. Soc. Am. 84, 499–514 (1973).

    Article  Google Scholar 

  2. Lanphere, M. S. & Reed, B. L. Bull. geol. Soc. Am. 84, 3773–3782 (1972).

    Article  Google Scholar 

  3. Pitcher, W. S. Bull. geol. Soc. Lond. 131, 587–591 (1975).

    Article  Google Scholar 

  4. Kawano, Y. & Ueda, Y. Tectonophysics 4, 523–530 (1967).

    Google Scholar 

  5. Evernden, J. F. & Kistler, R. W. Prof. Pap. U.S. geol. Survey 623 (1970).

  6. Kistler, R. W., Evernden, J. F. & Shaw, H. R. Bull. geol. Soc. Am. 82, 853–868 (1971).

    Article  Google Scholar 

  7. Dickinson, W. R. Rev. geophys. Space Phys. 8, 813–860 (1970).

    Article  ADS  CAS  Google Scholar 

  8. Dickinson, W. R. Am. J. Sci. 272, 551–576 (1972).

    Article  ADS  CAS  Google Scholar 

  9. Crowder, D. F., McKee, E. H., Ross, D. C. & Krauskopf, K. B. Bull. geol. Soc. Am. 84, 285–296 (1973).

    Article  CAS  Google Scholar 

  10. Kistler, R. W. A Rev. Earth planet. Sci. 2, 403–418 (1974). Kistler, R. W. in Pacific Coast Paleogeography Symp. Vol. 2, 75–84 (Soc. Econ. Paleontol. Miner., Pacific Section, 1978).

    Google Scholar 

  11. Bussell, M. A., Pitcher, W. S. & Wilson, P. Can. J. Earth Sci. 13, 1020–1030 (1976).

    Article  ADS  Google Scholar 

  12. Armstrong, R. L., Taubeneck, W. H. & Hales, P. O. Bull. geol. Soc. Am. 88, 397–411 (1977).

    Article  CAS  Google Scholar 

  13. Grow, J. A. & Atwater, T. Bull. geol. Soc. Am. 81, 3715–3722 (1970).

    Article  Google Scholar 

  14. Coney, P. J. Am. J. Sci. 272, 603–628 (1972).

    Article  ADS  Google Scholar 

  15. Coney, P. J. & Reynolds, S. J. Nature 270, 403–406 (1977).

    Article  ADS  Google Scholar 

  16. Keith, S. B. Geology 6, 516–521 (1978).

    Article  ADS  CAS  Google Scholar 

  17. Shaw, H. R., Kistler, R. W. & Evernden, J. F. Bull. geol. Soc. Am. 82, 869–896 (1971).

    Article  Google Scholar 

  18. Thorpe, R. S. & Francis, P. W. in Origin of Granite Batholiths, 65–75 (Shiva, Orpington, 1979).

    Book  Google Scholar 

  19. Coleman, R. G. 24th int. geol. Congr. Sect 2, 19–26 (1972).

  20. Prince, R. A. & Kulm, L. D. Bull. geol. Soc. Am. 86, 1639–1653 (1975).

    Article  Google Scholar 

  21. Cross, T. A. & Pilger, R. H. Jr Am J. Sci. 278, 865–902 (1978).

    Article  ADS  Google Scholar 

  22. Bailey, E. H., Irwin, W. P. & Jones, D. L. Bull. Calif. Div. Mines Geol. 183 (1964).

  23. Blake, M. C. Jr & Jones, D. L. Spec. Pub. Soc. Econ. Paleontol. Miner. 19, 345–357 (1974).

    Google Scholar 

  24. Pessagno, E. A. Jr Geology 1, 153–156 (1973).

    Article  ADS  Google Scholar 

  25. McLaughlin, R. J. & Pessagno, E. A. Jr J. Res. U.S. geol. Survey 6, 715–726 (1978).

    Google Scholar 

  26. Evitt, W. R. & Pierce, S. T. Geology 3, 433–436 (1975).

    Article  ADS  Google Scholar 

  27. Berkland, J. O., Raymond, L. A., Kramer, J. C., Moores, E. M. & O'Day, M. Bull. Am. Ass. petrol. Geol. 56, 2295–2302 (1972).

    Google Scholar 

  28. O'Day, M. & Kramer, J. C. in Geol Soc. Sacramento Guidebook 27, 51–56 (1972).

    Google Scholar 

  29. Maxwell, J. C. Bull. geol. Soc. Am. 85, 1195–1204 (1974).

    Article  Google Scholar 

  30. Jones, D. L., Blake, M. C. Jr, Bailey, E. H. & McLaughlin, R. J. Tectonophysics 47, 207–222 (1978).

    Google Scholar 

  31. Schweickert, R. A. in Pacific Coast Paleogeography Symp. Vol. 2, 361–384 (Soc. Econ. Paleontol. Miner. Pacific Section, 1978).

    Google Scholar 

  32. Irwin, W. P., Jones, D. L. & Pessagno, E. A. Jr Geology 5, 557–562 (1977).

    Article  ADS  Google Scholar 

  33. Suppe, J. 24th Int. geol. Congr. Sect. 3, 552–559 (1972).

  34. Karig, D. E. & Sharman, G. F. Bull. geol. Soc. Am. 86, 377–389 (1975).

    Article  Google Scholar 

  35. Behrman, P. S. in Pacific Coast Paleogeography Symp. Vol. 2, 337–348 (Soc. Econ. Paleontol. Miner. Pacific Section, 1978).

    Google Scholar 

  36. Suppe, J. Bull. geol. Soc. Am. 80, 135–142 (1969).

    Article  Google Scholar 

  37. Coleman, R. G. & Lanphere, M. A. Bull. geol. Soc. Am. 82, 2397–2412 (1971).

    Article  CAS  Google Scholar 

  38. Suppe, J. & Armstrong, R. L. Am. J. Sci. 272, 217–233 (1972).

    Article  ADS  CAS  Google Scholar 

  39. Lehman, D. H., Gucwa, P. R., Fritz, D. & McDowell, F. W. Abstr. Prog. geol. Soc. Am. 9, 452 (1977).

    Google Scholar 

  40. Suppe, J. & Foland, K. A. in Pacific Coast Paleogeography Symp. Vol. 2, 431–452 (Soc. Econ. Paleontol. Miner., Pacific Section, 1978).

    Google Scholar 

  41. Lanphere, M. A., Blake, M. C. Jr. & Irwin, W. P. Am. J. Sci. 278, 798–815 (1978).

    Article  ADS  Google Scholar 

  42. Forbes, R. B. & Lanphere, M. A. J. geophys. Res. 78, 1383–1386 (1973).

    Article  ADS  CAS  Google Scholar 

  43. Reed, B. L. & Lanphere, M. A. Bull. geol. Soc. Am. 84, 2583–2610 (1973).

    Article  CAS  Google Scholar 

  44. Moore, J. C. in The Geology of Continental Margins, 811–816 (Springer, Berlin, 1974).

    Book  Google Scholar 

  45. Carden, J. R., Connelly, W., Forbes, R. B. & Turner, D. L. Geology 5, 529–533 (1977).

    Article  ADS  CAS  Google Scholar 

  46. Plafker, G., Jones, D. L. & Pessagno, E. A. Jr. in Circular U.S. geol. Survey 751 -B, 41–42 (1977).

    Google Scholar 

  47. Plafker, G. et al. Open-file Rept. U.S. geol. Survey 78–490 (1978).

  48. Hudson, T. Geology 7, 230–234 (1979).

    Article  ADS  Google Scholar 

  49. Katili, J. A. in The Western Pacific: Island Arcs, Marginal Seas, Geochemistry, 287–306 (Crane, Russak, Canberra, 1973).

    Google Scholar 

  50. Matsumoto, T. & Kimura, T. in Mesozoic–Cenozoic Orogenic Belts, 513–542 (Scottish Academic Press, Edinburgh, 1974).

    Google Scholar 

  51. Hotz, P. E., Lanphere, M. A. & Swanson, D. A. Geology 5, 659–663 (1977).

    Article  ADS  CAS  Google Scholar 

  52. Wachs, D. & Hein, J. R. Geology 3, 29–33 (1975).

    Article  ADS  Google Scholar 

  53. Berkland, J. O. 24th Int. geol. Congr. Sect 3, 99–105 (1972).

  54. Gucwa, P. R. Geology 3, 105–108 (1975).

    Article  ADS  Google Scholar 

  55. Bachman, S. B. in Pacific Coast Paleogeography Symp. Vol. 2, 419–430 (Soc. Econ. Paleontol. Miner. Pacific Section 1978).

    Google Scholar 

  56. van Hinte, J. E. Bull. Am. Ass. petrol. Geol. 60, 269–287 (1976); 489–497 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raymond, L., Swanson, S. Accretion and episodic plutonism. Nature 285, 317–319 (1980). https://doi.org/10.1038/285317a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/285317a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing