Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Non-mendelian mutation affecting ribulose-1, 5-bisphosphate carboxylase structure and activity

Abstract

Chlamydomonas reinhardii, a haploid unicellular green alga, is the only organism in which the non-mendelian (uniparental) genes thought to reside in chloroplast DNA have been observed to re combine. Thus, genetic mapping by recombination analysis is possible, and a single linkage group with a large number of markers has been characterized1,2. Although circumstantial evidence is consistent with the hypothesis that this uniparental linkage group is located in the chloroplast,1,2 there is no direct evidence associating any of the known markers with chloroplast DNA. As the gene for the large subunit (LS) of ribulose-1, 5-bisphosphate carboxylase (RubPCase) has been located on the physical map of C. reinhardii chloroplast DNA,3,4 a genetic marker in this same gene would help to prove the relationship between the uniparental linkage group and chloroplast DNA. We have now succeeded in isolating a mutation in a C. reinhardii gene which controls the structure and function of the LS of RubPCase. This new genetic marker will serve as the first reference point in our efforts to correlate the physical and genetic maps for the chloroplast genome. At the same time, the fact that we have obtained this mutant should encourage further attempts to produce genetic modifications of this key photosynthetic enzyme with the goal of improving plant productivity5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sager, R. Cytoplasmic Genes and Organelles (Academic, New York, 1972).

    Google Scholar 

  2. Gillham, N. W. Organelle Heredity (Raven, New York, 1978).

    Google Scholar 

  3. Gelvin, S., Heizmann, P. & Howell, S. H. Proc. natn. Acad. Sci U.S.A. 74, 3193–3197 (1977).

    Article  ADS  CAS  Google Scholar 

  4. Rochaix, J. D. & Malnoe, P. in Chloroplast Development (ed. Akoyunoglou, G.) 581–586 (Elsevier, Amsterdam, 1979).

    Google Scholar 

  5. Ogren, W. L. in CO2 Metabolism and Plant Productivity (eds Burris, R. H. & Black, C. C.) 19–29 (University Park Press, Baltimore, 1976).

    Google Scholar 

  6. Kung, S. Science 191, 429–434 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Jensen, R. G. & Bahr, J. T. A. Rev. Pl. Physiol. 28, 379–400 (1977).

    Article  CAS  Google Scholar 

  8. Lorimer, G. H. & Andrews, T. J. Nature 243, 359–360 (1973).

    Article  ADS  CAS  Google Scholar 

  9. Levine, R. P. Bot. Monogr. 10, 424–433 (1974).

    CAS  Google Scholar 

  10. Shepherd, H. S., Boynton, J. E. & Gillham, N. W. Proc. natn. Acad. Sci. U.S.A. 76, 1353–1357 (1979).

    Article  ADS  CAS  Google Scholar 

  11. Moll, B. & Levine, R. P. Pl. Physiol. 46, 576–580 (1970).

    Article  CAS  Google Scholar 

  12. Spreitzer, R. J. thesis, Case Western Reserve Univ. (1979).

  13. Wurtz, E. A., Boynton, J. E. & Gillham, N. W. Proc. natn. Acad. Sci. U.S.A. 74, 4552–4556 (1977).

    Article  ADS  CAS  Google Scholar 

  14. Loppes, R. Molec. gen. Genet. 102, 229–231 (1968).

    Article  CAS  PubMed  Google Scholar 

  15. Levine, R. P. & Ebersold, W. T. A. Rev. Microbiol 14, 197–216 (1960).

    Article  CAS  Google Scholar 

  16. Goldthwaite, J. J. & Bogorad, L. Analyt. Biochem. 41, 57–66 (1971).

    Article  CAS  PubMed  Google Scholar 

  17. O'Farrell, P. H. J. biol. Chem. 250, 4007–4021 (1975).

    CAS  PubMed  Google Scholar 

  18. Spreitzer, R. J. & Mets, L. J. Cell Biol. 79, 319a (1978).

    Google Scholar 

  19. Nelson, P. E. & Surzycki, S. J. Eur. J. Biochem. 61, 465–474 (1976).

    Article  CAS  PubMed  Google Scholar 

  20. Kung, S. D. & Marsho, T. V. Nature 259, 325–326 (1976).

    Article  ADS  CAS  Google Scholar 

  21. Mets, L. J. J. supramolec. Struct. Suppl. 3, 144 (1979).

    Google Scholar 

  22. Grant, D., Boynton, J. E. & Gillham, N. W. J. Cell Biol. 83, 365a (1979).

    Google Scholar 

  23. Hallier, U. W., Schmitt, J. M., Heber, U., Chaianova, S. S. & Volodarsky, A. D. Biochim. biophys. Acta 504, 67–83 (1978).

    Article  CAS  PubMed  Google Scholar 

  24. Andersen, K. Biochim. biophys. Acta 585, 1–11 (1979).

    Article  CAS  PubMed  Google Scholar 

  25. Bennoun, P. & Levine, R. P. Pl. Physiol. 42, 1284–1287 (1967).

    Article  CAS  Google Scholar 

  26. Arnon, D. I. Pl. Physiol. 24, 1–15 (1949).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spreitzer, R., Mets, L. Non-mendelian mutation affecting ribulose-1, 5-bisphosphate carboxylase structure and activity. Nature 285, 114–115 (1980). https://doi.org/10.1038/285114a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/285114a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing