Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spider feeding behaviour optimises dietary essential amino acid composition

Abstract

Classical models of foraging behaviour1–3 assume that feeding patterns maximising the net caloric gain per unit time or minimising the tune spent in foraging will be favoured by natural selection. There is some evidence for this behaviour in some foragers4, mostly higher vertebrates for which time and energy constraints are frequently paramount. However, while these models may suffice under some circumstances, nutritional information from the veterinary, wildlife management, and entomological literature shows that an animal requires a diet containing all necessary nutrients to be truly fit (physiologically and evolutionarily). Therefore unless animals are very severely constrained energetically, foraging behaviour should lead to nutritional as well as caloric optimisation. Here I show that free-living wolf spiders will tend to prey on three species in proportions which optimise the proportions of the essential amino acids they provide in the diet.

This is a preview of subscription content, access via your institution

Access options

Similar content being viewed by others

References

  1. Emlen, J. M. Am. Nat. 100, 611–617 (1966).

    Article  Google Scholar 

  2. MacArthur, R. H. & Pianka, E. R. Am. Nat. 100, 603–609 (1966).

    Article  Google Scholar 

  3. Schoener, T. W. A. Rev. ecol. Syst. 2, 369–404 (1971).

    Article  Google Scholar 

  4. Pyke, G. H., Pulliam, H. R. & Charnov, E. L. Q. Rev. Biol. 52, 137–154 (1977).

    Article  Google Scholar 

  5. Greenstone, M. H. thesis, Univ. Calif. Berkeley (1976).

  6. Greenstone, M. H. J. appl. Ecol. 14, 457–464 (1977).

    Article  Google Scholar 

  7. Freeland, W. J. & Janzen, D. H. Am. Nat. 108, 269–289 (1974).

    Article  CAS  Google Scholar 

  8. Sokal, R. R. & Rohlf, F. J. Biometry, 589 (Freeman, San Francisco, 1969).

    Google Scholar 

  9. House, H. L. A. Rev. Biochem. 31, 653–672 (1962).

    Article  CAS  Google Scholar 

  10. Dadd, R. H. A. Rev. Ent. 18, 381–420 (1973).

    Article  CAS  Google Scholar 

  11. Baker, I. & Baker, H. G. New Phytol. 76, 87–98 (1976).

    Article  Google Scholar 

  12. Nakamura, M. & Nakamura, K. Oecologia 27, 97–116 (1977).

    Article  ADS  Google Scholar 

  13. Hardman, J. M. thesis, Simon Fraser Univ. (1972).

  14. Custer, T. W. & Pitelka, F. A. Condor 77, 210–212 (1975).

    Article  Google Scholar 

  15. Campbell, H. G. Matrices with Applications, 14 (Appleton-Century Crofts, New York, 1968).

    Google Scholar 

  16. Fuentes, E. R. Ecology 57, 3–17 (1976).

    Article  Google Scholar 

  17. Siegel, S. Non-parametric Statistics for the Behavioral Sciences, 116–127 (McGraw-Hill, New York, 1956).

    Google Scholar 

  18. Barnett, S. A. The Rat 61 (University of Chicago Press, 1975).

    Google Scholar 

  19. Holling, C. S. Mem. ent. Soc. Canada 45, 1–60 (1965).

    Google Scholar 

  20. Waldbauer, G. P. & Bhattacharya, A. K. J. Insect. Physiol. 19, 407–418 (1973).

    Article  Google Scholar 

  21. Tinbergen, L. Archs neerl. Zool. 13, 266–379 (1960).

    Article  Google Scholar 

  22. Edgar, W. D. J. Zool. Lond. 159, 405–411 (1969); Neth J. Zool. 20, 487–491 (1970).

    Article  Google Scholar 

  23. Hallander, H. Oikos 21, 337–340 (1970).

    Article  Google Scholar 

  24. Yeargan, K. V. Env. Ent. 4, 137–141 (1975).

    Article  Google Scholar 

  25. Miyashita, K. Appl. Ent. Zool. 3, 81–88 (1968).

    Article  Google Scholar 

  26. Hydhorn, S.B. thesis, Univ. Calif. Berkeley(1977).

  27. Slanksky, F., Jr. & Feeney, P. Ecol. Monogr. 47, 209–228 (1977).

    Article  Google Scholar 

  28. White, T.C.R. Oecologia 33, 71–86 (1978).

    Article  ADS  CAS  Google Scholar 

  29. Stenseth, N. C. & Hansson, L. Am. Nat. 113, 373–389 (1979).

    Article  Google Scholar 

  30. Marten, G. G. Ecology 54, 92–101 (1973).

    Article  Google Scholar 

  31. Pulliam, H. R. Am. Nat. 109, 765–768 (1975).

    Article  Google Scholar 

  32. Westoby, M. Am. Nat. 108, 290–304 (1974).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenstone, M. Spider feeding behaviour optimises dietary essential amino acid composition. Nature 282, 501–503 (1979). https://doi.org/10.1038/282501a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/282501a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing