Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Thromboxane molecules do not adopt the prostaglandin hairpin conformation

Abstract

The hairpin conformational hypothesis1 has been proposed to rationalise much of the structure–activity and receptor-binding data which have accumulated for the prostaglandin (PG) hormones. The hairpin conformation, thought to be necessary for PG activity, requires that the α- and ω-chains of the molecule be extended and in parallel alignment, separated by a van der Waals contact distance for the full length of the chains, with the ends of the chains approximately 5.5 Å apart. The similarity between the structures of the thromboxanes (TXs) and the PGs suggests that the profile of activity of TXs, like that of PGs, centres on subtle conformational variation of the hairpin geometry. Thromboxane B2 (TXB2) is a stable hydrolysis product2 of a highly reactive, short-lived intermediate3, thromboxane A2 (TXA2), which is formed from the prostaglandin endoperoxide (PGH2) as indicated in Fig. 1. An examination of molecular models of TXA2 and TXB2 suggests that the struc tural differences between the ring moieties may have much less influence in altering the side-chain conformations of TXs than do substituents on the relatively more flexible cyclopentane ring of a PG molecule. We report here the first diffraction analysis of a thromboxane structure and note that the molecular conformation is not hairpin shaped.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Andersen, N. H., Ramwell, P. W., Leovey, E. M. K. & Johnson, M. in Advances in Prostaglandin and Thromboxane Research Vol. 1 (eds Samuelsson, B. & Paoletti, R.) 271–289 (Raven, New York, 1976).

    Google Scholar 

  2. Hamberg, M. & Samuelsson, B. Proc. natn. Acad. Sci. U.S.A. 74, 3400–3404 (1974).

    Article  ADS  Google Scholar 

  3. Hamberg, M., Svensson, J. & Samuelsson, B. Proc. natn. Acad. Sci. U.S.A. 72, 2994–2998 (1975).

    Article  ADS  CAS  Google Scholar 

  4. Hanessian, S. & Lavallee, P. Can. J. Chem. 55, 562–565 (1977).

    Article  CAS  Google Scholar 

  5. Nyburg, S. Acta crystallogr. B30, 251–253 (1974).

    Article  CAS  Google Scholar 

  6. Chidester, C. G. & Duchamp, D. J. American Crystallographic Association Spring Meeting, Berkeley, California, Abstr. A6 (1974).

  7. Langs, D. A., Erman, M. G. & DeTitta, G. T. Science 197, 1003–1005 (1977).

    Article  ADS  CAS  Google Scholar 

  8. Wasserman, M. A. & Griffin, R. L. Eur. J. Pharmac. 46, 303–313 (1977).

    Article  CAS  Google Scholar 

  9. Kindahl, H. Prostaglandins 13, 619–629 (1977).

    Article  CAS  Google Scholar 

  10. Roberts, L. J., Sweetman, B. J., Morgan, J. L., Payne, N. A. & Oates, J. A. Prostaglandins 13, 631–648 (1977).

    Article  CAS  Google Scholar 

  11. DeTitta, G. T. Science 191, 1271–1272 (1976).

    Article  ADS  CAS  Google Scholar 

  12. DeTitta, G. T., Langs, D. A. & Edmonds, J. W. Biochemistry 18, 3387–3391 (1979).

    Article  CAS  Google Scholar 

  13. Dawson, W., Boot, J. R., Cockerill, A. F., Mallen, D. N. B. & Osborne, D. J. Nature 262, 699–702 (1976).

    Article  ADS  CAS  Google Scholar 

  14. Piper, P. J. & Vane, J. R. Nature 223, 29–35 (1969).

    Article  ADS  CAS  Google Scholar 

  15. Needleman, P., Minkes, M. & Raz, A. Science 193, 163–165 (1976).

    Article  ADS  CAS  Google Scholar 

  16. Falardeau, P., Hamberg, M. & Samuelsson, B. Biochem. biophys. Acta 441, 193–200 (1976).

    Article  CAS  Google Scholar 

  17. Nelson, N. A. & Jackson, R. W. Tetrahedron Lett. 37, 3275–3278 (1976).

    Article  Google Scholar 

  18. Kelly, R. C., Schletter, L. & Stein, S. J. Tetrahedron Lett. 37, 3279–3282 (1976).

    Article  Google Scholar 

  19. Schneider, W. P. & Morge, R. A. Tetrahedron Lett. 37, 3283–3286 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langs, D., Fortier, S., Erman, M. et al. Thromboxane molecules do not adopt the prostaglandin hairpin conformation. Nature 281, 237–238 (1979). https://doi.org/10.1038/281237a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/281237a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing